File size: 13,458 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import json
import os

import torch
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from PIL import Image
from torch.utils.data import Dataset
from pycocotools import mask
import numpy as np
import copy

from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset
import torchvision.transforms as T
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from torchvision.transforms.functional import InterpolationMode
from .encode_fn import video_lisa_encode_fn
from .utils import dynamic_preprocess

from .gcg_process import glamm_openpsg_map_fn, glamm_flickr_map_fn, glamm_granf_map_fn, glamm_refcocog_map_fn

class GCGDataset(Dataset):
    os.environ['TOKENIZERS_PARALLELISM'] = 'true'
    IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
    IMG_START_TOKEN = '<img>'
    IMG_END_TOKEN = '</img>'

    IMAGENET_MEAN = (0.485, 0.456, 0.406)
    IMAGENET_STD = (0.229, 0.224, 0.225)
    def __init__(self,
                 image_folder,
                 data_path=None,
                 tokenizer=None,
                 max_length=8196,
                 special_tokens=None,
                 template_map_fn=None,
                 extra_image_processor=None,
                 lazy=True,
                 repeats=1,
                 single_image_mode=False,
    ):
        super().__init__()
        assert lazy
        self.lazy = lazy
        self.max_length = max_length

        json_data = self.json_file_preprocess(data_path)
        json_data = DatasetDict({'train': HFDataset.from_list(json_data)})
        self.text_data = build_origin_dataset(json_data, 'train')

        self.image_folder = image_folder

        self.tokenizer = BUILDER.build(tokenizer)
        if special_tokens is not None:
            self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.template_map_fn = template_map_fn
        if isinstance(self.template_map_fn, dict) and self.lazy:
            _type = self.template_map_fn['type']
            del self.template_map_fn['type']
            self.template_map_fn = _type(**self.template_map_fn)

        if extra_image_processor is not None:
            self.extra_image_processor = BUILDER.build(extra_image_processor)

        self.repeats = repeats

        self._system = ''

        self.min_dynamic_patch = 1
        self.max_dynamic_patch = 12
        self.downsample_ratio = 0.5
        self.image_size = 448
        self.use_thumbnail = True
        patch_size = 14
        self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))

        self.transformer = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
        ])

        if special_tokens is not None:
            self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.single_image_mode = single_image_mode

    def json_file_preprocess(self, data_path):
        with open(data_path, 'r') as f:
            json_data = json.load(f)
        return json_data

    @property
    def modality_length(self):
        length_list = []
        for data_dict in self.text_data:
            if self.lazy:
                cur_len = 100
            else:
                cur_len = len(data_dict['input_ids'])
                if data_dict.get('image', None) is None:
                    cur_len = -cur_len
            length_list.append(cur_len)
        return length_list * self.repeats

    def __len__(self):
        return len(self.text_data) * self.repeats

    def real_len(self):
        return len(self.text_data)

    def decode_mask(self, object_masks, ori_height, ori_width):
        binary_masks = []
        for object_mask in object_masks:
            binary_mask = np.zeros((ori_height, ori_width), dtype=np.uint8)
            for seg in object_mask:
                rles = mask.frPyObjects([seg], ori_height, ori_width)
                m = mask.decode(rles)
                m = m.astype(np.uint8)
                binary_mask += m.squeeze()

            binary_masks.append(binary_mask)
        if len(binary_masks) == 0:
            return None
        masks = np.stack(binary_masks, axis=0)
        masks = torch.from_numpy(masks)
        return masks

    def dataset_map_fn(self, data_dict):
        data_dict = glamm_refcocog_map_fn(data_dict)
        return data_dict

    def replace_image_str(self, data_dict, image_str):
        data_dict['conversation'][0]['input'] = \
            data_dict['conversation'][0]['input'].replace(DEFAULT_IMAGE_TOKEN, image_str)
        return data_dict

    def __getitem__(self, index):

        index = index % self.real_len()
        data_dict = copy.deepcopy(self.text_data[index])

        # parse datasets
        result = self.dataset_map_fn(data_dict)
        data_dict.update(result)

        # process image
        image_file = data_dict['image']
        image = Image.open(os.path.join(self.image_folder,
                                        image_file)).convert('RGB')
        ori_width, ori_height = image.size
        if hasattr(self, 'extra_image_processor'):
            g_image = np.array(image)  # for grounding
            g_image = self.extra_image_processor.apply_image(g_image)
            g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
            data_dict['g_pixel_values'] = g_pixel_values

        if self.single_image_mode:
            images = [image]
        else:
            images = dynamic_preprocess(image, self.min_dynamic_patch,
                                        self.max_dynamic_patch,
                                        self.image_size, self.use_thumbnail)
        pixel_values = [self.transformer(image) for image in images]
        pixel_values = torch.stack(pixel_values)
        data_dict['pixel_values'] = pixel_values

        num_image_tokens = pixel_values.shape[0] * self.patch_token
        image_token_str = f'{self.IMG_START_TOKEN}' \
                          f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                          f'{self.IMG_END_TOKEN}'

        data_dict = self.replace_image_str(data_dict, image_token_str)

        result = self.template_map_fn(data_dict)
        data_dict.update(result)
        result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length,
                                      with_image_token=True)
        data_dict.update(result)
        # process mask
        data_dict['masks'] = self.decode_mask(data_dict['masks'], ori_height=ori_height, ori_width=ori_width)

        if data_dict['masks'] is None:
            return self.__getitem__(0)

        return data_dict

class RefCOCOgGCGDataset(GCGDataset):
    def __init__(self,
                 image_folder,
                 data_path=None,
                 tokenizer=None,
                 max_length=8196,
                 special_tokens=None,
                 template_map_fn=None,
                 extra_image_processor=None,
                 lazy=True,
                 repeats=1,
                 single_image_mode=False,
                 ):
        super().__init__(
            image_folder=image_folder,
            data_path=data_path,
            tokenizer=tokenizer,
            max_length=max_length,
            special_tokens=special_tokens,
            template_map_fn=template_map_fn,
            extra_image_processor=extra_image_processor,
            lazy=lazy,
            repeats=repeats,
            single_image_mode=single_image_mode,
        )

    def json_file_preprocess(self, data_path):
        json_data = json.load(open(data_path))

        # convert {id: dict} to dict(..., id=xx)
        for idx in range(len(json_data)):
            id = list(json_data[idx].keys())[0]
            json_data[idx] = json_data[idx][id]
            json_data[idx].update({'id': id})
        return json_data

class GranDfGCGDataset(GCGDataset):
    def __init__(self,
                 image_folder,
                 data_path=None,
                 tokenizer=None,
                 max_length=8196,
                 special_tokens=None,
                 template_map_fn=None,
                 extra_image_processor=None,
                 lazy=True,
                 repeats=1,
                 single_image_mode=False,
                 ):
        super().__init__(
            image_folder=image_folder,
            data_path=data_path,
            tokenizer=tokenizer,
            max_length=max_length,
            special_tokens=special_tokens,
            template_map_fn=template_map_fn,
            extra_image_processor=extra_image_processor,
            lazy=lazy,
            repeats=repeats,
            single_image_mode=single_image_mode,
        )

    def dataset_map_fn(self, data_dict):
        data_dict = glamm_granf_map_fn(data_dict)
        return data_dict

    def decode_mask(self, object_masks, ori_height, ori_width):
        binary_masks = []
        for object_mask in object_masks:
            binary_mask = np.zeros((ori_height, ori_width), dtype=np.uint8)

            for rle in object_mask:
                m = mask.decode(rle).astype(np.uint8)
                binary_mask += m.squeeze()

            binary_masks.append(binary_mask)
        if len(binary_masks) == 0:
            return None
        masks = np.stack(binary_masks, axis=0)
        masks = torch.from_numpy(masks)
        return masks

class OpenPsgGCGDataset(GranDfGCGDataset):
    def __init__(self,
                 image_folder,
                 data_path=None,
                 tokenizer=None,
                 max_length=8196,
                 special_tokens=None,
                 template_map_fn=None,
                 extra_image_processor=None,
                 lazy=True,
                 repeats=1,
                 single_image_mode=False,
                 ):
        super().__init__(
            image_folder=image_folder,
            data_path=data_path,
            tokenizer=tokenizer,
            max_length=max_length,
            special_tokens=special_tokens,
            template_map_fn=template_map_fn,
            extra_image_processor=extra_image_processor,
            lazy=lazy,
            repeats=repeats,
            single_image_mode=single_image_mode,
        )
    def dataset_map_fn(self, data_dict):
        data_dict = glamm_openpsg_map_fn(data_dict)
        return data_dict


class FlickrGCGDataset(GCGDataset):
    def __init__(self,
                 image_folder,
                 data_path=None,
                 tokenizer=None,
                 max_length=8196,
                 special_tokens=None,
                 template_map_fn=None,
                 extra_image_processor=None,
                 lazy=True,
                 repeats=1,
                 single_image_mode=False,
                 ):
        super().__init__(
            image_folder=image_folder,
            data_path=data_path,
            tokenizer=tokenizer,
            max_length=max_length,
            special_tokens=special_tokens,
            template_map_fn=template_map_fn,
            extra_image_processor=extra_image_processor,
            lazy=lazy,
            repeats=repeats,
            single_image_mode=single_image_mode,
        )

    def dataset_map_fn(self, data_dict):
        data_dict = glamm_flickr_map_fn(data_dict)
        return data_dict

    def json_file_preprocess(self, data_path):
        def filter_images(data_infos, min_size):
            return [i for i, info in enumerate(data_infos) if min(info['width'], info['height']) >= min_size]

        # convert {id: dict} to dict(..., id=xx)
        from pycocotools.coco import COCO
        self.coco = COCO(data_path)
        self.image_ids = self.coco.getImgIds()
        data_infos = []
        total_ann_ids = []
        removed_img_count = 0
        for img_id in self.image_ids:
            info = self.coco.loadImgs([img_id])[0]
            if len(info['caption'].split(' ')) < 3:
                removed_img_count += 1
                continue
            info['filename'] = info['file_name'].split('_')[-1]
            info['height'] = int(info['height'])
            info['width'] = int(info['width'])
            data_infos.append(info)
            ann_ids = self.coco.getAnnIds(imgIds=[img_id])
            total_ann_ids.extend(ann_ids)
        assert len(set(total_ann_ids)) == len(total_ann_ids), f"Non-unique annotation IDs in '{data_path}'!"
        print(f'Removed {removed_img_count} images.')
        data_infos = [data_infos[i] for i in filter_images(data_infos, min_size=32)]

        # obtain_annotations
        for data_info in data_infos:
            ann_ids = self.coco.getAnnIds(imgIds=data_info['id'])
            ann_info = self.coco.loadAnns(ann_ids)
            data_info.update({'ann_info': ann_info})
        return data_infos

    def decode_mask(self, object_masks, ori_height, ori_width):
        binary_masks = []
        for object_mask in object_masks:
            binary_mask = mask.decode(object_mask).astype(np.uint8)
            binary_masks.append(binary_mask)
        if len(binary_masks) == 0:
            return None
        masks = np.stack(binary_masks, axis=0)
        masks = torch.from_numpy(masks)
        return masks