Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,040 Bytes
d59f323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import torch
import torch.nn as nn
from mmengine.model import BaseModel
from xtuner.registry import BUILDER
from xtuner.model.utils import get_peft_model_state_dict
class LisaModel(BaseModel):
def __init__(self,
mllm,
tokenizer,
grounding_encoder,
loss_mask=None,
loss_dice=None,):
super(LisaModel, self).__init__()
self.mllm = BUILDER.build(mllm)
if self.mllm.use_llm_lora:
self.mllm.model.language_model.base_model.model.lm_head.requires_grad_(True)
self.mllm.model.language_model.base_model.model.model.embed_tokens.requires_grad_(True)
self.tokenizer = BUILDER.build(tokenizer)
self._add_special_tokens()
self.grounding_encoder = BUILDER.build(grounding_encoder)
self.grounding_encoder.requires_grad_(False)
self.grounding_encoder.mask_decoder.requires_grad_(True)
in_dim = self.mllm.model.config.llm_config.hidden_size
out_dim = self.grounding_encoder.mask_decoder.transformer_dim
self.text_hidden_fcs = nn.Sequential(
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
)
self.loss_mask = BUILDER.build(loss_mask)
self.loss_dice = BUILDER.build(loss_dice)
def _add_special_tokens(self):
special_tokens = ['[SEG]']
num_new_tokens = self.tokenizer.add_tokens(
special_tokens, special_tokens=True)
if num_new_tokens > 0:
self.mllm.model.language_model.resize_token_embeddings(len(self.tokenizer))
self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
def _generate_and_postprocess_masks(self, pred_embeddings, image_embeddings, resize_list=None, orig_size_list=None):
pred_masks = []
for i, pred_embedding in enumerate(pred_embeddings):
sparse_embeddings, dense_embeddings = self.grounding_encoder.prompt_encoder(
points=None, boxes=None, masks=None, text_embeds=pred_embedding.unsqueeze(1)
)
sparse_embeddings = sparse_embeddings.to(pred_embedding.dtype)
low_res_masks, _ = self.grounding_encoder.mask_decoder(
image_embeddings=image_embeddings[i].unsqueeze(0),
image_pe=self.grounding_encoder.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings,
multimask_output=False, )
pred_mask = self.grounding_encoder.postprocess_masks(
low_res_masks, input_size=resize_list[i], original_size=orig_size_list[i], )
pred_masks.append(pred_mask[:, 0])
return pred_masks
def load_state_dict(self, state_dict, strict: bool = True, assign: bool = False):
return super().load_state_dict(state_dict, strict, assign)
def state_dict(self, *args, **kwargs):
state_dict = super().state_dict(*args, **kwargs)
from collections import OrderedDict
to_return = OrderedDict()
# Step 1. visual_encoder
if self.mllm.use_visual_encoder_lora:
to_return.update(
get_peft_model_state_dict(
self.mllm.model.vision_model, state_dict=state_dict))
elif not self.mllm.freeze_visual_encoder:
to_return.update({
k: v
for k, v in state_dict.items() if 'visual_encoder.' in k
})
# Step 2. LLM
if self.mllm.use_llm_lora:
to_return.update(
get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict))
elif not self.mllm.freeze_llm:
to_return.update(
{k: v
for k, v in state_dict.items() if 'llm.' in k})
# Step 3. Projector
to_return.update(
{k: v
for k, v in state_dict.items() if 'mlp1.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'grounding_encoder.mask_decoder.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'text_hidden_fcs.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'lm_head.weight' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'embed_tokens.weight' in k})
return to_return
def forward(self, data, data_samples=None, mode='loss'):
if mode == 'loss':
return self.compute_loss(data)
elif mode == 'predict':
return self.predict(data)
elif mode == 'tensor':
return self._forward(data)
else:
raise NotImplementedError
def compute_loss(self,data, data_samples=None, mode='loss'):
g_pixel_values = data.pop('g_pixel_values', None)
gt_masks = data.pop('masks', None)
input_ids = data['input_ids']
output = self.mllm(data, data_samples, mode)
if gt_masks is None:
g_pixel_values = [
torch.randn(3, 512, 1024).to(output.hidden_states[-1])
for _ in range(len(input_ids))]
ori_size_list = [(512, 1024) for _ in range(len(input_ids))]
seg_token_mask = torch.zeros_like(input_ids).bool()
seg_token_mask[:, -2] = True
else:
ori_size_list = [mask.shape[-2:] for mask in gt_masks]
seg_token_mask = input_ids == self.seg_token_idx
resize_list = [pixel.shape[-2:] for pixel in g_pixel_values]
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess(pixel) for pixel in g_pixel_values
])
image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values)
seg_token_mask = seg_token_mask[:, 1:]
seg_token_mask = torch.cat([
seg_token_mask,
seg_token_mask.new_zeros(seg_token_mask.shape[0], 1)], dim=-1)
hidden_states = output.hidden_states
hidden_states = self.text_hidden_fcs(hidden_states[-1])
pred_embeddings = hidden_states[seg_token_mask]
seg_token_counts = seg_token_mask.int().sum(-1)
pred_embeddings_list = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
pred_masks = self._generate_and_postprocess_masks(
pred_embeddings_list, image_embeddings, resize_list, ori_size_list)
if gt_masks is None:
return {
'loss_mask': pred_masks[0].sum() * 0.0,
'loss_dice': pred_masks[0].sum() * 0.0,
'llm_loss': output.loss,
}
bs = len(pred_masks)
loss_mask, loss_dice = 0, 0
for i in range(bs):
pred_mask = pred_masks[i]
gt_mask = gt_masks[i]
sam_loss_mask = self.loss_mask(pred_mask, gt_mask)
sam_loss_dice = self.loss_dice(pred_mask, gt_mask)
accuracy = torch.eq((pred_mask.sigmoid() > 0.5), gt_mask).to(pred_mask).mean()
loss_mask += sam_loss_mask
loss_dice += sam_loss_dice
loss_dict = {
'loss_mask': loss_mask / bs,
'loss_dice': loss_dice / bs,
'llm_loss': output.loss,
}
return loss_dict
def predict(self, data):
generation_config = dict(max_new_tokens=1024, do_sample=False)
eos_token_id = self.tokenizer.convert_tokens_to_ids('<|end|>')
generation_config['eos_token_id'] = eos_token_id
pixel_values = data.pop('pixel_values')
attention_mask = data.pop('attention_mask', None)
input_ids = data['input_ids']
generate_output = self.mllm.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict_in_generate=True,
**generation_config,
)
device = self.mllm.model.device
hidden_states = generate_output.hidden_states
last_hidden_states = [item[-1] for item in hidden_states[1:]] # remove input_ids
last_hidden_states = torch.cat(last_hidden_states, dim=1)
last_hidden_states = last_hidden_states[0] # remove batch dim
output_ids = generate_output.sequences[0][:-1] # remove batch dim and eos token
output_text = self.tokenizer.decode(output_ids)
seg_mask = output_ids == self.seg_token_idx
if seg_mask.sum() == 0:
return dict(
pred_mask_logits=None,
output_text=output_text,
)
seg_embeds = self.text_hidden_fcs(last_hidden_states[seg_mask])
g_pixel_values = data.pop('g_pixel_values', None)
gt_masks = data['masks']
ori_size_list = [mask.shape[-2:] for mask in gt_masks]
resize_list = [pixel.shape[-2:] for pixel in g_pixel_values]
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess(pixel.to(device)) for pixel in g_pixel_values
])
image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values)
pred_masks = self._generate_and_postprocess_masks(
[seg_embeds], image_embeddings, resize_list, ori_size_list)
return dict(
pred_mask_logits=pred_masks[0], # remove batch dim
output_text=output_text,
)
def gradient_checkpointing_enable(self):
self.activation_checkpointing_enable()
def activation_checkpointing_enable(self):
self.mllm.model.language_model.gradient_checkpointing_enable()
def gradient_checkpointing_disable(self):
self.activation_checkpointing_disable()
def activation_checkpointing_disable(self):
self.mllm.model.language_model.gradient_checkpointing_disable()
|