File size: 20,003 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import copy
import random
import glob
import json
import logging
import os
from typing import Literal

import torch

from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils

from xtuner.registry import BUILDER
from xtuner.utils import IGNORE_INDEX
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn

from projects.glamm.datasets.utils.utils import expand2square

from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN

from .utils import dynamic_preprocess


class InfinityMMDataset(Dataset):
    os.environ['TOKENIZERS_PARALLELISM'] = 'true'
    IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
    IMG_START_TOKEN = '<img>'
    IMG_END_TOKEN = '</img>'

    IMAGENET_MEAN = (0.485, 0.456, 0.406)
    IMAGENET_STD = (0.229, 0.224, 0.225)

    def __init__(self,
                 tokenizer,
                 data_path,
                 prompt_template,
                 special_tokens=None,
                 max_length=8192,
                 offline_save_path='./work_dirs/infinityMM.json',
                 ):
        self.offline_save_path = offline_save_path
        self.tokenizer = BUILDER.build(tokenizer)
        if special_tokens is not None:
            self.tokenizer.add_tokens(special_tokens, special_tokens=True)
        self._system = ''

        self.template = prompt_template
        self.max_length = max_length

        self.min_dynamic_patch = 1
        self.max_dynamic_patch = 12
        self.downsample_ratio = 0.5
        self.image_size = 448
        self.use_thumbnail = True
        patch_size = 14
        self.patch_token = int(
            (self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))

        self.transformer = T.Compose([
            T.Lambda(lambda img: img.convert('RGB')
            if img.mode != 'RGB' else img),
            T.Resize((self.image_size, self.image_size),
                     interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
        ])

        self.data = self._load_annotations(data_path)
        self._max_refetch = 1000

    def _load_annotations(self, data_path):
        if os.path.exists(self.offline_save_path):
            with open(self.offline_save_path, 'r') as f:
                ret = json.load(f)
            print(f"Load InfinityMM file list from {self.offline_save_path}, {len(ret)} items !!!")
            return ret
        sub_folders = []
        for sub_folder in os.listdir(data_path):
            if '.' not in sub_folder:
                # a folder
                if "LVIS_111k" in sub_folder:
                    # special case, have subsub folder
                    subsub_folders = os.listdir(os.path.join(data_path, sub_folder))
                    for subsub_folder in subsub_folders:
                        sub_folders.append(os.path.join(data_path, sub_folder, subsub_folder))
                else:
                    sub_folders.append(os.path.join(data_path, sub_folder))

        all_jsons = []
        for sub_folder in sub_folders:
            print(f"Processing {sub_folder} !!!")
            _files = os.listdir(sub_folder)
            _num = 0
            for _file in _files:
                if '.json' in _file:
                    _json_path = os.path.join(sub_folder, _file)
                    _num += 1
                    all_jsons.append(os.path.join(sub_folder, _file))
            print(f"Finished {sub_folder} has {_num} items.")

        with open(self.offline_save_path, 'w') as f:
            json.dump(all_jsons, f)

        return all_jsons

    def __getitem__(self, index):
        for _ in range(self._max_refetch + 1):
            data = self.prepare_data(index)
            # Broken images may cause the returned data to be None
            if data is None:
                index = self._rand_another()
                continue
            return data

    def __len__(self):
        return len(self.data)

    @property
    def modality_length(self):
        self.group_length = []
        for data_dict in self.data:
            self.group_length.append(100)
        return self.group_length

    @property
    def length(self):
        group_length = np.array(self.group_length)
        group_length = np.abs(group_length).tolist()
        return group_length

    def prepare_data(self, index):
        data_path = self.data[index]

        with open(data_path, 'r') as f:
            data_dict = json.load(f)
        if 'image' in data_dict.keys():
            data_dict['image'] = data_path.replace('.json', '.jpg')

        if data_dict is None:
            return None

        out_data_dict = {}

        if data_dict.get('image', None) is not None:
            image_file = data_dict['image']
            try:
                image = Image.open(image_file).convert('RGB')
            except Exception as e:
                print(f'Error: {e}', flush=True)
                print_log(f'Error: {e}', logger='current')
                return None

            images = dynamic_preprocess(image, self.min_dynamic_patch,
                                        self.max_dynamic_patch,
                                        self.image_size, self.use_thumbnail)
            pixel_values = [self.transformer(image) for image in images]
            pixel_values = torch.stack(pixel_values)
            out_data_dict['pixel_values'] = pixel_values

            num_image_tokens = pixel_values.shape[0] * self.patch_token
            image_token_str = f'{self.IMG_START_TOKEN}' \
                              f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                              f'{self.IMG_END_TOKEN}'
            token_dict = self.get_inputid_labels(
                data_dict['conversations'], image_token_str)
            out_data_dict.update(token_dict)
        else:
            token_dict = self.get_inputid_labels(
                data_dict['conversations'], None)
            out_data_dict.update(token_dict)
            out_data_dict['pixel_values'] = torch.zeros(
                1, 3, self.image_size, self.image_size)
        return out_data_dict

    def _rand_another(self) -> int:
        return np.random.randint(0, len(self.data))

    def get_inputid_labels(self, conversations, image_token_str) -> dict:
        input = ''
        out_conversation = []
        while conversations and conversations[0]['from'] == 'gpt':
            # Skip the first one if it is from gpt
            conversations = conversations[1:]
        for i, msg in enumerate(conversations):
            if msg['from'] == 'human':

                # change to 1 image
                if '<image>' in msg['value']:
                    msg['value'] = msg['value'].replace('<image>\n', '').replace('<image>', '')
                    if i == 0:
                        msg['value'] = "<image>\n" + msg['value']

                if image_token_str is None and '<image>' in msg['value']:
                    msg['value'] = msg['value'].replace('<image>', '')
                if '<image>' in msg['value']:
                    msg['value'] = msg['value'].replace('<image>', image_token_str).strip()
                input += msg['value'].strip()
            elif msg['from'] == 'gpt':
                out_conversation.append({
                    'input': input,
                    'output': msg['value'].strip()
                })
                input = ''
            else:
                raise NotImplementedError

        input_ids, labels = [], []
        for i, single_turn_conversation in enumerate(out_conversation):
            input = single_turn_conversation.get('input', '')
            if input is None:
                input = ''
            input_text = self.template.INSTRUCTION.format(
                input=input, round=i + 1)

            if i == 0:
                if self._system != '' and self._system is not None:
                    system = self.template.SYSTEM.format(system=self._system)
                    input_text = system + input_text
                input_encode = self.tokenizer.encode(
                    input_text, add_special_tokens=True)
            else:
                input_encode = self.tokenizer.encode(
                    input_text, add_special_tokens=False)
            input_ids += input_encode
            labels += [IGNORE_INDEX] * len(input_encode)

            output_text = single_turn_conversation.get('output', '')
            if self.template.get('SUFFIX', None):
                output_text += self.template.SUFFIX
            output_encode = self.tokenizer.encode(
                output_text, add_special_tokens=False)
            input_ids += output_encode
            labels += copy.deepcopy(output_encode)

        if len(input_ids) > self.max_length:
            input_ids = input_ids[:self.max_length]
            labels = labels[:self.max_length]
            print_log(
                f'Warning: input_ids length({len(input_ids)}) '
                f'is longer than max_length, cut to {self.max_length}',
                logger='current')
        return {'input_ids': input_ids, 'labels': labels}


class LLaVADataset(Dataset):
    os.environ['TOKENIZERS_PARALLELISM'] = 'true'
    IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
    IMG_START_TOKEN = '<img>'
    IMG_END_TOKEN = '</img>'

    IMAGENET_MEAN = (0.485, 0.456, 0.406)
    IMAGENET_STD = (0.229, 0.224, 0.225)

    def __init__(self,
                 tokenizer,
                 data_path,
                 prompt_template,
                 special_tokens=None,
                 image_folder=None,
                 max_length=8192,
                 arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl',
                 preprocessor=None,
                 skip_pure_text=False,
                 ):

        self.tokenizer = BUILDER.build(tokenizer)
        if special_tokens is not None:
            self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.image_folder = image_folder
        self.template = prompt_template
        self.max_length = max_length

        self._system = ''

        self.arch_type = arch_type
        self.min_dynamic_patch = 1
        self.max_dynamic_patch = 12
        self.downsample_ratio = 0.5
        if self.arch_type == 'llava':
            self.downsample_ratio = 1
        self.image_size = 448
        if self.arch_type == 'llava':
            self.image_size = 336
        self.use_thumbnail = True
        patch_size = 14
        self.patch_token = int(
            (self.image_size // patch_size)**2 * (self.downsample_ratio**2))


        if self.arch_type == 'qwen':
            self.IMG_CONTEXT_TOKEN = '<|image_pad|>'
            self.IMG_START_TOKEN = '<|vision_start|>'
            self.IMG_END_TOKEN = '<|vision_end|>'
        elif self.arch_type == 'llava':
            self.IMG_CONTEXT_TOKEN = '<image>'
            self.IMG_START_TOKEN = ''
            self.IMG_END_TOKEN = ''

        if preprocessor is None:
            self.transformer = T.Compose([
                T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
                T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
                T.ToTensor(),
                T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
            ])
            self.preprocessor = None
        else:
            self.transformer = None
            self.preprocessor = BUILDER.build(preprocessor)

        self.data = self._load_annotations(data_path, image_folder)
        self._max_refetch = 1000

        self.skip_pure_text = skip_pure_text

    def _load_annotations(self, data_path, image_folder=None):
        data = json.load(open(data_path))
        return data

    def __getitem__(self, index):
        for _ in range(self._max_refetch + 1):
            data = self.prepare_data(index)
            # Broken images may cause the returned data to be None
            if data is None:
                index = self._rand_another()
                continue
            return data

    def __len__(self):
        return len(self.data)

    @property
    def modality_length(self):
        self.group_length = []
        for data_dict in self.data:
            self.group_length.append(100)
        return self.group_length

    @property
    def length(self):
        group_length = np.array(self.group_length)
        group_length = np.abs(group_length).tolist()
        return group_length
    
    def prepare_data(self, index):
        data_dict: dict = self.data[index]
        
        if data_dict is None:
            return None
        
        out_data_dict = {}

        if self.skip_pure_text and data_dict.get('image', None) is None:
            return None

        if data_dict.get('image', None) is not None:
            image_file = os.path.join(self.image_folder, data_dict['image'])
            try:
                image = Image.open(image_file).convert('RGB')
            except Exception as e:
                print(f'Error: {e}', flush=True)
                print_log(f'Error: {e}', logger='current')
                return None
            if self.preprocessor is not None:
                # images = dynamic_preprocess(image, self.min_dynamic_patch,
                #                             self.max_dynamic_patch,
                #                             self.image_size, self.use_thumbnail)
                images = [image]
                if self.arch_type == 'qwen':
                    _data_dict = self.preprocessor(images, do_resize=True)
                    _data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
                    _data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int)
                    num_image_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2))
                elif self.arch_type == 'llava':
                    _data_dict = self.preprocessor(images, do_resize=True, size=(self.image_size, self.image_size))
                    _data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0)
                    _data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
                    num_image_tokens = _data_dict['pixel_values'].shape[0] * self.patch_token
                else:
                    raise NotImplementedError
                out_data_dict.update(_data_dict)
            else:
                images = dynamic_preprocess(image, self.min_dynamic_patch,
                                            self.max_dynamic_patch,
                                            self.image_size, self.use_thumbnail)
                pixel_values = [self.transformer(image) for image in images]
                pixel_values = torch.stack(pixel_values)
                out_data_dict['pixel_values'] = pixel_values

                num_image_tokens = pixel_values.shape[0] * self.patch_token
            image_token_str = f'{self.IMG_START_TOKEN}' \
                              f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                              f'{self.IMG_END_TOKEN}'
            token_dict = self.get_inputid_labels(
                data_dict['conversations'], image_token_str)
            out_data_dict.update(token_dict)
        else:
            token_dict = self.get_inputid_labels(
                data_dict['conversations'], None)
            out_data_dict.update(token_dict)
            out_data_dict['pixel_values'] = torch.zeros(
                1, 3, self.image_size, self.image_size)
        return out_data_dict

    def _rand_another(self) -> int:
        return np.random.randint(0, len(self.data))

    def get_inputid_labels(self, conversations, image_token_str) -> dict:
        input = ''
        out_conversation = []
        while conversations and conversations[0]['from'] == 'gpt':
            # Skip the first one if it is from gpt
            conversations = conversations[1:]
        for msg in conversations:
            if msg['from'] == 'human':
                if image_token_str is None and '<image>' in msg['value']:
                    msg['value'] = msg['value'].replace('<image>', '')
                if '<image>' in msg['value']:
                    msg['value'] = msg['value'].replace('<image>', image_token_str).strip()
                input += msg['value'].strip()
            elif msg['from'] == 'gpt':
                out_conversation.append({
                    'input': input,
                    'output': msg['value'].strip()
                })
                input = ''
            else:
                raise NotImplementedError

        input_ids, labels = [], []
        for i, single_turn_conversation in enumerate(out_conversation):
            input = single_turn_conversation.get('input', '')
            if input is None:
                input = ''
            input_text = self.template.INSTRUCTION.format(
                input=input, round=i + 1)

            if i == 0:
                if self._system != '' and self._system is not None:
                    system = self.template.SYSTEM.format(system=self._system)
                    input_text = system + input_text
                input_encode = self.tokenizer.encode(
                    input_text, add_special_tokens=True)
            else:
                input_encode = self.tokenizer.encode(
                    input_text, add_special_tokens=False)
            input_ids += input_encode
            labels += [IGNORE_INDEX] * len(input_encode)

            output_text = single_turn_conversation.get('output', '')
            if self.template.get('SUFFIX', None):
                output_text += self.template.SUFFIX
            output_encode = self.tokenizer.encode(
                output_text, add_special_tokens=False)
            input_ids += output_encode
            labels += copy.deepcopy(output_encode)

        if len(input_ids) > self.max_length:
            input_ids = input_ids[:self.max_length]
            labels = labels[:self.max_length]
            print_log(
                f'Warning: input_ids length({len(input_ids)}) '
                f'is longer than max_length, cut to {self.max_length}',
                logger='current')
        return {'input_ids': input_ids, 'labels': labels}


if __name__ == '__main__':
    from transformers import CLIPImageProcessor, AutoTokenizer
    from third_parts.segment_anything.utils.transforms import ResizeLongestSide
    pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
    llm_name_or_path = 'lmsys/vicuna-7b-v1.5'

    tokenizer = dict(
        type=AutoTokenizer.from_pretrained,
        pretrained_model_name_or_path=llm_name_or_path)
    image_processor = dict(
        type=CLIPImageProcessor.from_pretrained,
        pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
    extra_image_processor = dict(
        type=ResizeLongestSide,
        target_length=1024,
    )
    from xtuner.utils.templates import PROMPT_TEMPLATE
    prompt_template = PROMPT_TEMPLATE.vicuna
    from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
    from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn

    dataset = LLaVADataset(
        tokenizer=tokenizer,
        data_path='data/llava_data/LLaVA-Instruct-150K/llava_instruct_150k.json',
        prompt_template=prompt_template,
        special_tokens=['[SEG]'],
        image_folder='data/coco/train2017/',
    )
    for i in range(1000):
        dataset[i]