File size: 8,978 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import json
import os
import random

import torch
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from PIL import Image
from torch.utils.data import Dataset
from pycocotools import mask
import numpy as np
import copy

from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset
import torchvision.transforms as T
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from torchvision.transforms.functional import InterpolationMode
from .encode_fn import video_lisa_encode_fn
from .utils import dynamic_preprocess

from .grand_process import glamm_grand_map_fn

class GranDDataset(Dataset):
    os.environ['TOKENIZERS_PARALLELISM'] = 'true'
    IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
    IMG_START_TOKEN = '<img>'
    IMG_END_TOKEN = '</img>'

    IMAGENET_MEAN = (0.485, 0.456, 0.406)
    IMAGENET_STD = (0.229, 0.224, 0.225)
    def __init__(self,
                 image_folder,
                 json_folder=None,
                 tokenizer=None,
                 max_length=8196,
                 special_tokens=None,
                 template_map_fn=None,
                 extra_image_processor=None,
                 lazy=True,
                 repeats=1,
                 single_image_mode=False,
                 image_list_save_path='./work_dirs/grand_image.json',
                 json_list_save_path='./work_dirs/grand_jsons.json',
    ):
        super().__init__()
        assert lazy
        self.lazy = lazy
        self.max_length = max_length

        self.image_list_save_path = image_list_save_path
        self.json_list_save_path = json_list_save_path

        json_files, image_path_dict = self.json_file_preprocess(image_folder, json_folder)
        self.json_data = json_files
        self.image_path_dict = image_path_dict

        self.image_folder = image_folder

        self.tokenizer = BUILDER.build(tokenizer)
        if special_tokens is not None:
            self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.template_map_fn = template_map_fn
        if isinstance(self.template_map_fn, dict) and self.lazy:
            _type = self.template_map_fn['type']
            del self.template_map_fn['type']
            self.template_map_fn = _type(**self.template_map_fn)

        if extra_image_processor is not None:
            self.extra_image_processor = BUILDER.build(extra_image_processor)

        self.repeats = repeats

        self._system = ''

        self.min_dynamic_patch = 1
        self.max_dynamic_patch = 12
        self.downsample_ratio = 0.5
        self.image_size = 448
        self.use_thumbnail = True
        patch_size = 14
        self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))

        self.transformer = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
        ])

        if special_tokens is not None:
            self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.single_image_mode = single_image_mode

    def json_file_preprocess(self, image_folder, json_folder):

        # list jsons
        print("Processing GRAND json files !!!")
        if os.path.exists(self.json_list_save_path):
            with open(self.json_list_save_path, 'r') as f:
                json_files = json.load(f)
        else:
            json_files = os.listdir(json_folder)
            _json_files = []
            for _file in json_files:
                if '.json' in _file:
                    _json_files.append(os.path.join(json_folder, _file))
            json_files = _json_files
            with open(self.json_list_save_path, 'w') as f:
                json.dump(json_files, f)
        print(f"Finished, {len(json_files)} json files !")

        # list images
        print("Processing GRAND image files !!!")
        if os.path.exists(self.image_list_save_path):
            with open(self.image_list_save_path, 'r') as f:
                image_path_dict = json.load(f)
        else:
            sub_folders = os.listdir(image_folder)
            _sub_folders = []
            for folder_name in sub_folders:
                if 'sa_00' in folder_name:
                    _sub_folders.append(folder_name)
            sub_folders = _sub_folders
            sub_folders = [os.path.join(image_folder, folder_name) for folder_name in sub_folders]

            image_path_dict = {}
            for sub_folder in sub_folders:
                files = os.listdir(sub_folder)
                for _file in files:
                    if '.jpg' in _file:
                        image_path_dict[_file] = os.path.join(sub_folder, _file)

            with open(self.image_list_save_path, 'w') as f:
                json.dump(image_path_dict, f)
        print(f"Finished, {len(image_path_dict)} image files !")

        return json_files, image_path_dict

    @property
    def modality_length(self):
        length_list = [10000] * len(self.json_data)
        return length_list * self.repeats

    def __len__(self):
        return len(self.json_data) * self.repeats

    def real_len(self):
        return len(self.json_data)

    def decode_mask(self, object_masks, ori_height, ori_width):
        binary_masks = []
        for object_mask in object_masks:
            binary_mask = np.zeros((ori_height, ori_width), dtype=np.uint8)
            for seg in object_mask:
                m = mask.decode(seg)
                m = m.astype(np.uint8)
                binary_mask += m.squeeze()

            binary_masks.append(binary_mask)
        if len(binary_masks) == 0:
            return None
        masks = np.stack(binary_masks, axis=0)
        masks = torch.from_numpy(masks)
        return masks

    def dataset_map_fn(self, data_dict):
        data_dict = glamm_grand_map_fn(data_dict)
        return data_dict

    def replace_image_str(self, data_dict, image_str):
        data_dict['conversation'][0]['input'] = \
            data_dict['conversation'][0]['input'].replace(DEFAULT_IMAGE_TOKEN, image_str)
        return data_dict

    def __getitem__(self, index):

        index = index % self.real_len()
        json_file_path = self.json_data[index]
        with open(json_file_path, 'r') as f:
            json_dict = json.load(f)

        image_name = list(json_dict.keys())[0]

        if image_name not in self.image_path_dict.keys():
            return self.__getitem__(random.randint(0, len(self.json_data) - 1))
        image_path = self.image_path_dict[image_name]

        json_dict = json_dict[image_name]
        # parse datasets
        result = self.dataset_map_fn(json_dict)
        json_dict.update(result)
        data_dict = json_dict

        data_dict['image'] = image_path

        # process image
        image_file = data_dict['image']
        try:
            image = Image.open(os.path.join(self.image_folder,
                                            image_file)).convert('RGB')
        except:
            return self.__getitem__(random.randint(0, len(self.json_data) - 1))
        ori_width, ori_height = image.size
        if hasattr(self, 'extra_image_processor'):
            g_image = np.array(image)  # for grounding
            g_image = self.extra_image_processor.apply_image(g_image)
            g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
            data_dict['g_pixel_values'] = g_pixel_values

        if self.single_image_mode:
            images = [image]
        else:
            images = dynamic_preprocess(image, self.min_dynamic_patch,
                                        self.max_dynamic_patch,
                                        self.image_size, self.use_thumbnail)
        pixel_values = [self.transformer(image) for image in images]
        pixel_values = torch.stack(pixel_values)
        data_dict['pixel_values'] = pixel_values

        num_image_tokens = pixel_values.shape[0] * self.patch_token
        image_token_str = f'{self.IMG_START_TOKEN}' \
                          f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                          f'{self.IMG_END_TOKEN}'

        data_dict = self.replace_image_str(data_dict, image_token_str)

        result = self.template_map_fn(data_dict)
        data_dict.update(result)
        result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length,
                                      with_image_token=True)
        data_dict.update(result)
        # process mask
        data_dict['masks'] = self.decode_mask(data_dict['masks'], ori_height=ori_height, ori_width=ori_width)

        if data_dict['masks'] is None:
            return self.__getitem__(random.randint(0, len(self.json_data) - 1))

        return data_dict