File size: 14,098 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
from abc import ABCMeta, abstractmethod
from typing import List, Optional, Tuple
from torch import Tensor

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from mmcv import ops
from mmcv.cnn import ConvModule, Linear
from mmengine.model import BaseModule

class BaseRoIExtractor(BaseModule, metaclass=ABCMeta):
    """Base class for RoI extractor.

    Args:
        roi_layer (:obj:`ConfigDict` or dict): Specify RoI layer type and
            arguments.
        out_channels (int): Output channels of RoI layers.
        featmap_strides (list[int]): Strides of input feature maps.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict], optional): Initialization config dict. Defaults to None.
    """

    def __init__(self,
                 roi_layer,
                 out_channels: int,
                 featmap_strides: List[int],
                 init_cfg=None) -> None:
        super().__init__(init_cfg=init_cfg)
        self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides)
        self.out_channels = out_channels
        self.featmap_strides = featmap_strides

    @property
    def num_inputs(self) -> int:
        """int: Number of input feature maps."""
        return len(self.featmap_strides)

    def build_roi_layers(self, layer_cfg,
                         featmap_strides: List[int]) -> nn.ModuleList:
        """Build RoI operator to extract feature from each level feature map.

        Args:
            layer_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and
                config RoI layer operation. Options are modules under
                ``mmcv/ops`` such as ``RoIAlign``.
            featmap_strides (list[int]): The stride of input feature map w.r.t
                to the original image size, which would be used to scale RoI
                coordinate (original image coordinate system) to feature
                coordinate system.

        Returns:
            :obj:`nn.ModuleList`: The RoI extractor modules for each level
                feature map.
        """

        cfg = layer_cfg.copy()
        layer_type = cfg.pop('type')
        if isinstance(layer_type, str):
            assert hasattr(ops, layer_type)
            layer_cls = getattr(ops, layer_type)
        else:
            layer_cls = layer_type
        roi_layers = nn.ModuleList(
            [layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides])
        return roi_layers

    def roi_rescale(self, rois: Tensor, scale_factor: float) -> Tensor:
        """Scale RoI coordinates by scale factor.

        Args:
            rois (Tensor): RoI (Region of Interest), shape (n, 5)
            scale_factor (float): Scale factor that RoI will be multiplied by.

        Returns:
            Tensor: Scaled RoI.
        """

        cx = (rois[:, 1] + rois[:, 3]) * 0.5
        cy = (rois[:, 2] + rois[:, 4]) * 0.5
        w = rois[:, 3] - rois[:, 1]
        h = rois[:, 4] - rois[:, 2]
        new_w = w * scale_factor
        new_h = h * scale_factor
        x1 = cx - new_w * 0.5
        x2 = cx + new_w * 0.5
        y1 = cy - new_h * 0.5
        y2 = cy + new_h * 0.5
        new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1)
        return new_rois

    @abstractmethod
    def forward(self,
                feats: Tuple[Tensor],
                rois: Tensor,
                roi_scale_factor: Optional[float] = None) -> Tensor:
        """Extractor ROI feats.

        Args:
            feats (Tuple[Tensor]): Multi-scale features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.
            roi_scale_factor (Optional[float]): RoI scale factor.
                Defaults to None.

        Returns:
            Tensor: RoI feature.
        """
        pass


class MLVLFuseModule(nn.Module):
    def __init__(self, input_dims=1024, embed_dims=1024, num_levels=3, num_fuse=4):
        super(MLVLFuseModule, self).__init__()
        self.embed_dims = embed_dims
        self.num_levels = num_levels
        self.num_fuse = num_fuse
        self.input_dims = input_dims
        self.shuffle_channles = embed_dims // 4

        # contains the tuple of level indices that will do the interaction
        self.fuse_lvl_list = []
        num_levels = self.num_levels
        for lvl in range(num_levels):
            top_lvl = min(lvl + 1, num_levels - 1)
            dow_lvl = max(lvl - 1, 0)
            tar_lvl = lvl
            self.fuse_lvl_list.append((tar_lvl, top_lvl, dow_lvl))

        self.remain_chs = self.embed_dims - self.shuffle_channles * 2
        self._init_layers()

    def generate_coordinate(self, featmap_sizes, device='cuda'):

        x_range = torch.linspace(-1, 1, featmap_sizes[-1], device=device)
        y_range = torch.linspace(-1, 1, featmap_sizes[-2], device=device)
        y, x = torch.meshgrid(y_range, x_range)
        y = y.expand([featmap_sizes[0], 1, -1, -1])
        x = x.expand([featmap_sizes[0], 1, -1, -1])
        coord_feat = torch.cat([x, y], 1)

        return coord_feat

    def _init_layers(self):
        self.input_conv = nn.ModuleList([nn.Conv2d(self.input_dims + 2,
                                                   self.embed_dims, 1)
                                         for _ in range(self.num_levels)])
        self.fuse_convs = nn.ModuleList()
        for i in range(self.num_fuse):
            self.fuse_convs.append(
                ConvModule(self.embed_dims,
                           self.embed_dims,
                           3,
                           stride=1,
                           padding=3 // 2,
                           conv_cfg=None,
                           norm_cfg=dict(type='GN',
                                         num_groups=64,
                                         requires_grad=True)
                           ))

    def init_weights(self):
        pass

    def _single_shuffle(self, inputs, conv_module):
        if not isinstance(conv_module, (nn.ModuleList, list)):
            conv_module = [conv_module]
        for single_conv_m in conv_module:
            fused_inputs = []
            for fuse_lvl_tuple in self.fuse_lvl_list:
                tar_lvl, top_lvl, dow_lvl = fuse_lvl_tuple
                tar_input = inputs[tar_lvl]
                top_input = inputs[top_lvl]
                down_input = inputs[dow_lvl]
                remain = tar_input[:, :self.remain_chs]
                from_top = top_input[:, self.remain_chs:][:, self.shuffle_channles:]
                from_top = F.interpolate(from_top.to(torch.float32),
                                         size=tar_input.shape[-2:],
                                         mode='bilinear',
                                         align_corners=True)
                from_down = down_input[:, self.remain_chs:][:, :self.shuffle_channles]
                from_down = F.interpolate(from_down.to(torch.float32),
                                          size=tar_input.shape[-2:],
                                          mode='bilinear',
                                          align_corners=True)
                fused_inputs.append(
                    torch.cat([remain, from_top.to(remain.dtype), from_down.to(remain.dtype)], dim=1))
            fused_inputs = [single_conv_m(item) for item in fused_inputs]
            inputs = fused_inputs
        return inputs

    def forward(self, inputs, ):
        feat_size = [item.shape for item in inputs]
        new_inputs = []
        for feat, single_feat_size in zip(inputs, feat_size):
            coord_feat = self.generate_coordinate(
                single_feat_size, device=inputs[0].device)
            # feat = torch.cat([feat, coord_feat], dim=1)
            feat = torch.cat([feat, coord_feat.to(feat.dtype)], dim=1)
            new_inputs.append(feat)
        inputs = new_inputs

        inputs = [self.input_conv[lvl](item)
                  for lvl, item in enumerate(inputs)]

        for conv_m in self.fuse_convs:
            inputs = self._single_shuffle(inputs, [conv_m])
        return inputs


class MlvlRoIExtractor(BaseRoIExtractor):
    def __init__(self,
                 roi_layer,
                 out_channels,
                 featmap_strides,
                 embed_dims=1024,
                 stride=1,
                 norm_init=True,
                 fuse_level=3,
                 finest_scale=56,
                 init_cfg=None):
        super(MlvlRoIExtractor, self).__init__(roi_layer, out_channels,
                                               featmap_strides, init_cfg)
        self.embed_dims = embed_dims
        self.finest_scale = finest_scale
        self.fuse_level = fuse_level
        self.norm_init = norm_init

        self.pconvs = nn.ModuleList(
            nn.Conv2d(self.embed_dims, self.embed_dims, 3, stride=1, padding=1)
            for _ in range(self.fuse_level))
        self.pos_embedd = nn.Sequential(
            nn.Linear(4, 256),
            nn.ReLU(inplace=True),
            nn.LayerNorm(256),
            nn.Linear(256, 1024),
            nn.ReLU(inplace=True),
            nn.LayerNorm(1024),
        )
        self.updims = nn.Linear(1024, 4096)

        self.flatten_linear = nn.Linear(
            self.embed_dims * self.roi_layers[0].output_size[0] ** 2, 1024)

        self.norm_init_weights()

    #  self.dtype = torch.float32
    def norm_init_weights(self):
        pass

    def forward(self, feats, rois, roi_scale_factor=None):
        """Forward function."""
        num_imgs = len(rois)
        # feats = [item for item in feats]
        batch_rois = torch.cat(rois, dim=0).to(feats[0].dtype)
        pos_embedd = self.pos_embedd(batch_rois)
        out_size = self.roi_layers[0].output_size
        num_levels = len(feats)
        if feats[0].dim() == 3:
            h = w = int(math.sqrt(feats[0].shape[1]))
            assert h == 16
            assert w == 16
            b, c = feats[0].shape[0], feats[0].shape[-1]
            feats = [item.reshape(b, h, w, c).permute(0, 3, 1, 2)
                     for item in feats]
        new_rois = []
        for img_id, single_img_roi in enumerate(rois):
            # rescale to original img scale
            single_img_roi = single_img_roi * 224

            roi_img_id = single_img_roi.new_ones(len(single_img_roi)) * img_id
            single_img_roi = torch.cat(
                [roi_img_id[:, None], single_img_roi], dim=1)
            new_rois.append(single_img_roi)
        rois = torch.cat(new_rois)

        roi_feats = feats[0].new_zeros(self.fuse_level,
                                       rois.size(0), self.out_channels, *out_size)

        for i in range(num_levels):
            if len(rois) > 0:
                rois_ = rois
                ori_dtype = feats[i].dtype
                roi_feats_t = self.roi_layers[i](feats[i].to(
                    torch.float32), rois_.to(torch.float32))

                roi_feats[i] = roi_feats_t.to(ori_dtype)

            else:
                roi_feats += sum(
                    x.view(-1)[0]
                    for x in self.parameters()) * 0. + feats[i].sum() * 0.

        fuse_roi_feats = []
        for i in range(self.fuse_level):
            fuse_roi_feats.append(self.pconvs[i](roi_feats[i]))

        fuse_roi_feats = sum(fuse_roi_feats)
        fuse_roi_feats = F.relu(fuse_roi_feats)
        fuse_roi_feats = fuse_roi_feats.flatten(1, -1)
        fuse_roi_feats = self.flatten_linear(fuse_roi_feats)
        fuse_roi_feats = fuse_roi_feats + pos_embedd
        fuse_roi_feats = self.updims(fuse_roi_feats)
        query_feats = []
        for i in range(num_imgs):
            mask = rois[:, 0] == i
            query_feats.append(fuse_roi_feats[mask])

        return query_feats


class MLVLROIQueryModule(nn.Module):
    def __init__(self, embed_dims=1024, out_dims=4096,
                 num_levels=3):
        super(MLVLROIQueryModule, self).__init__()
        self.mlvl_fuse = MLVLFuseModule(input_dims=embed_dims,
                                        embed_dims=embed_dims,
                                        num_levels=num_levels,
                                        num_fuse=5)
        strids = [14 / 8, 14 / 4, 14 / 2, 14]
        assert len(strids) == num_levels
        bbox_roi_extractor = dict(roi_layer=dict(type='RoIAlign',
                                                 output_size=14,
                                                 sampling_ratio=2),
                                  out_channels=embed_dims,
                                  embed_dims=embed_dims,
                                  fuse_level=num_levels,
                                  featmap_strides=strids)

        self.roi_align = MlvlRoIExtractor(**bbox_roi_extractor)

    def forward(self, mlvl_feats, bboxes):
        if mlvl_feats[0].dim() == 3:
            h = w = int(math.sqrt(mlvl_feats[0].shape[1]))
            assert h == 24
            assert w == 24
            b, c = mlvl_feats[0].shape[0], mlvl_feats[0].shape[-1]
            mlvl_feats = [item.reshape(b, h, w, c).permute(0, 3, 1, 2) for item in mlvl_feats]
        base_shape = mlvl_feats[0].shape[-2:]
        num_level = len(mlvl_feats)
        to_shape = [(base_shape[0] * 2 ** level, base_shape[1] * 2 ** level)
                    for level in range(num_level)]
        to_shape = to_shape[::-1]
        for level in range(num_level):
            feat = mlvl_feats[level]
            shape = to_shape[level]
            # feat = feat
            # mlvl_feats[level] = F.interpolate(feat, size=shape, mode='bilinear', align_corners=True)
            # todo: temporary fix for "upsample_bilinear2d_out_frame" not implemented for 'BFloat16'
            feat = feat.to(torch.float32)
            mlvl_feats[level] = F.interpolate(
                feat, size=shape, mode='bilinear', align_corners=True)
            mlvl_feats[level] = mlvl_feats[level].to(torch.bfloat16)

        mlvl_feats = self.mlvl_fuse(mlvl_feats)

        return self.roi_align(mlvl_feats, bboxes)