File size: 9,610 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import numpy as np
from PIL import Image
import cv2

markdown_default = """
<link href="https://fonts.googleapis.com/css2?family=Montserrat:wght@400;700&display=swap" rel="stylesheet">
<style>
        .highlighted-text {
            font-family: 'Montserrat', sans-serif;
            font-weight: 600;
            font-size: 14px;
            color: rgb(255, 255, 239);
            background-color: rgb(225, 231, 254);
            border-radius: 7px;
            padding: 5px 7px;
            display: inline-block;
        }
        .regular-text {
            font-family: 'Montserrat', sans-serif;
            font-weight: 400;
            font-size: 14px;
        }
        .highlighted-response {
            font-family: 'Montserrat', sans-serif;
            font-weight: 600;
            font-size: 14px;
            border-radius: 6px;
            padding: 3px 4px;
            display: inline-block;
        }
</style>
<span class="highlighted-text" style='color:rgb(107, 100, 239)'>Sa2VA</span>
"""

description = """
**Usage** : <br>
&ensp;(1) For **Grounded Caption Generation** Interleaved Segmentation, input prompt like: *"Could you provide me with a detailed analysis of this photo? Please output with interleaved segmentation masks for the corresponding parts of the answer."* <br>
&ensp;(2) For **Segmentation Output**, input prompt like: *"Can you please segment xxx in the given image"* <br>
&ensp;(3) For **Image Captioning** VQA, input prompt like: *"Could you please give me a detailed description of the image?"* <br>
&ensp;(4) For **Image Conversation**, input arbitrary text instruction. <br>
"""

ONE_THIRD = 1.0/3.0
ONE_SIXTH = 1.0/6.0
TWO_THIRD = 2.0/3.0

def desaturate(rgb, factor=0.65):
    """
    Desaturate an RGB color by a given factor.

    :param rgb: A tuple of (r, g, b) where each value is in [0, 255].
    :param factor: The factor by which to reduce the saturation.
                   0 means completely desaturated, 1 means original color.
    :return: A tuple of desaturated (r, g, b) values in [0, 255].
    """
    r, g, b = [x / 255.0 for x in rgb]
    h, l, s = rgb_to_hls(r, g, b)
    l = factor
    new_r, new_g, new_b = hls_to_rgb(h, l, s)
    return (int(new_r * 255), int(new_g * 255), int(new_b * 255))

def rgb_to_hls(r, g, b):
    maxc = max(r, g, b)
    minc = min(r, g, b)
    sumc = (maxc+minc)
    rangec = (maxc-minc)
    l = sumc/2.0
    if minc == maxc:
        return 0.0, l, 0.0
    if l <= 0.5:
        s = rangec / sumc
    else:
        s = rangec / (2.0-sumc)
    rc = (maxc-r) / rangec
    gc = (maxc-g) / rangec
    bc = (maxc-b) / rangec
    if r == maxc:
        h = bc-gc
    elif g == maxc:
        h = 2.0+rc-bc
    else:
        h = 4.0+gc-rc
    h = (h/6.0) % 1.0
    return h, l, s

def hls_to_rgb(h, l, s):
    if s == 0.0:
        return l, l, l
    if l <= 0.5:
        m2 = l * (1.0+s)
    else:
        m2 = l+s-(l*s)
    m1 = 2.0*l - m2
    return (_v(m1, m2, h+ONE_THIRD), _v(m1, m2, h), _v(m1, m2, h-ONE_THIRD))

def _v(m1, m2, hue):
    hue = hue % 1.0
    if hue < ONE_SIXTH:
        return m1 + (m2-m1)*hue*6.0
    if hue < 0.5:
        return m2
    if hue < TWO_THIRD:
        return m1 + (m2-m1)*(TWO_THIRD-hue)*6.0
    return m1

def process_markdown(output_str, colors):
    output_str = output_str.replace("\n", "").replace("  ", " ").replace("<s>", "")\
        .replace("<|im_end|>", '').replace("<|end|>", "")
    output_str = output_str.split("ASSISTANT: ")[-1]

    # markdown_out = output_str.replace('[SEG]', '')
    markdown_out = output_str
    markdown_out = markdown_out.replace(
        "<p>", "<span class='highlighted-response' style='background-color:rgb[COLOR]'>"
    )
    markdown_out = markdown_out.replace("</p>", "</span>")

    for color in colors:
        markdown_out = markdown_out.replace("[COLOR]", str(desaturate(tuple(color))), 1)

    markdown_out = f""" 
    {markdown_out}
    """
    markdown_out = markdown_default + "<p><span class='regular-text'>" + markdown_out
    return markdown_out

def show_mask_pred(image, masks):
    masks = [mask[:1] for mask in masks]
    masks = np.concatenate(masks, axis=0)  # (n, h, w)

    selected_colors = []

    colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255),
              (255, 255, 0), (255, 0, 255), (0, 255, 255),
              (128, 128, 255), [255, 192, 203],  # Pink
              [165, 42, 42],    # Brown
              [255, 165, 0],    # Orange
              [128, 0, 128],     # Purple
              [0, 0, 128],       # Navy
              [128, 0, 0],      # Maroon
              [128, 128, 0],    # Olive
              [70, 130, 180],   # Steel Blue
              [173, 216, 230],  # Light Blue
              [255, 192, 0],    # Gold
              [255, 165, 165],  # Light Salmon
              [255, 20, 147],   # Deep Pink
              ]

    _mask_image = np.zeros((masks.shape[1], masks.shape[2], 3), dtype=np.uint8)

    for i, mask in enumerate(masks):
        color = colors[i % len(colors)]
        selected_colors.append(color)
        _mask_image[:, :, 0] = _mask_image[:, :, 0] + mask.astype(np.uint8) * color[0]
        _mask_image[:, :, 1] = _mask_image[:, :, 1] + mask.astype(np.uint8) * color[1]
        _mask_image[:, :, 2] = _mask_image[:, :, 2] + mask.astype(np.uint8) * color[2]


    image = np.array(image)
    image = image * 0.5 + _mask_image * 0.5
    image = image.astype(np.uint8)
    return image, selected_colors

def show_mask_pred_video(video, masks):
    ret_video = []
    selected_colors = []
    colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255),
              (255, 255, 0), (255, 0, 255), (0, 255, 255),
              (128, 128, 255), [255, 192, 203],  # Pink
              [165, 42, 42],  # Brown
              [255, 165, 0],  # Orange
              [128, 0, 128],  # Purple
              [0, 0, 128],  # Navy
              [128, 0, 0],  # Maroon
              [128, 128, 0],  # Olive
              [70, 130, 180],  # Steel Blue
              [173, 216, 230],  # Light Blue
              [255, 192, 0],  # Gold
              [255, 165, 165],  # Light Salmon
              [255, 20, 147],  # Deep Pink
              ]
    for i_frame in range(len(video)):
        frame_masks = [mask[i_frame:i_frame+1] for mask in masks]
        frame_masks = np.concatenate(frame_masks, axis=0)
        _mask_image = np.zeros((frame_masks.shape[1], frame_masks.shape[2], 3), dtype=np.uint8)

        for i, mask in enumerate(frame_masks):
            if i_frame == 0:
                color = colors[i % len(colors)]
                selected_colors.append(color)
            else:
                color = selected_colors[i]
            _mask_image[:, :, 0] = _mask_image[:, :, 0] + mask.astype(np.uint8) * color[0]
            _mask_image[:, :, 1] = _mask_image[:, :, 1] + mask.astype(np.uint8) * color[1]
            _mask_image[:, :, 2] = _mask_image[:, :, 2] + mask.astype(np.uint8) * color[2]

        image = np.array(video[i_frame])
        image = image * 0.5 + _mask_image * 0.5
        image = image.astype(np.uint8)
        ret_video.append(image)
    return ret_video, selected_colors

def parse_visual_prompts(points):
    ret = {'points': [], 'boxes': []}
    for item in points:
        if item[2] == 1.0:
            ret['points'].append([item[0], item[1]])
        elif item[2] == 2.0 or item[2] == 3.0:
            ret['boxes'].append([item[0], item[1], item[3], item[4]])
        else:
            raise NotImplementedError
    return ret

def get_video_frames(video_path):
    cap = cv2.VideoCapture(video_path)

    if not cap.isOpened():
        print("Error: Cannot open video file.")
        return

    frames = []

    frame_id = 0
    while True:
        ret, frame = cap.read()

        if not ret:
            break

        frames.append(frame)

        frame_id += 1

    cap.release()
    return frames

def get_frames_from_video(video_path, n_frames=5, sample_type="uniform"):
    frames = get_video_frames(video_path)
    if sample_type == "uniform":
        stride = len(frames) / (n_frames + 1e-4)
        ret = []
        for i in range(n_frames):
            idx = int(i * stride)
            frame = frames[idx]
            frame = frame[:, :, ::-1]
            frame_image = Image.fromarray(frame).convert('RGB')
            ret.append(frame_image)
    else:
        ret = []
        for frame in frames[:500]:
            frame = frame[:, :, ::-1]
            frame_image = Image.fromarray(frame).convert('RGB')
            ret.append(frame_image)
    return ret

def preprocess_video(video_path, text):
    if "Segment" in text or "segment" in text:
        sample_type = 'begin'
    else:
        sample_type = 'uniform'
    return get_frames_from_video(video_path, sample_type=sample_type)

def image2video_and_save(frames, save_path):
    success = frames_to_video(frames, save_path)
    return save_path


def frames_to_video(
        frames,
        output_path: str,
        fps: int = 24,
) -> bool:
    try:
        frames = [frame[:, :, ::-1] for frame in frames]
        # Use provided frame size or get from first frame
        height, width = frames[0].shape[:2]

        # Initialize video writer
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))

        # Process each frame
        for frame in frames:
            out.write(frame)

        # Release video writer
        out.release()
        print(f"Video saved successfully to {output_path}")
        return True

    except Exception as e:
        print(f"Error converting frames to video: {str(e)}")
        return False