File size: 15,189 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import logging
import os
from typing import Literal

import torch
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from mmengine import print_log
from PIL import Image
from torch.utils.data import Dataset
import numpy as np

from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import build_origin_dataset
import copy
from .encode_fn import video_lisa_encode_fn
import json
import cv2
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from decord import VideoReader, cpu


def _get_rawvideo_dec(video_path, select_frames=5):

    if os.path.exists(video_path):
        vreader = VideoReader(video_path, ctx=cpu(0))
    elif os.path.exists(video_path.replace('mkv', 'mp4')):
        vreader = VideoReader(video_path.replace('mkv', 'mp4'), ctx=cpu(0))
    else:
        print(video_path)
        raise FileNotFoundError

    fps = vreader.get_avg_fps()
    f_start = 0
    f_end = len(vreader) - 1
    num_frames = f_end - f_start + 1
    assert num_frames > 0, f'num_frames: {num_frames}, f_start: {f_start}, f_end: {f_end}, fps: {fps}, video_path: {video_path}'
    # T x 3 x H x W
    if num_frames <= select_frames:
        sample_pos = range(f_start, f_end + 1)
    else:
        split_point = np.linspace(0, num_frames, num=select_frames+1, dtype=int)
        sample_pos = [np.random.randint(split_point[i], split_point[i+1]) for i in range(select_frames)]
    patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]
    return patch_images


class VideoChatUniViDataset(Dataset):
    IMAGENET_MEAN = (0.485, 0.456, 0.406)
    IMAGENET_STD = (0.229, 0.224, 0.225)
    IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
    IMG_START_TOKEN = '<img>'
    IMG_END_TOKEN = '</img>'

    FAST_IMG_CONTEXT_TOKEN = '<FAST_IMG_CONTEXT>'
    FAST_IMG_START_TOKEN = '<fast_img>'
    FAST_IMG_END_TOKEN = '</fast_img>'

    def __init__(self,
                 image_folder,
                 json_file,
                 extra_image_processor=None,
                 tokenizer=None,
                 sampled_frames=10,
                 offline_processed_text_folder=None,
                 template_map_fn=None,
                 max_length=2048,
                 lazy=True,
                 repeats=1,
                 special_tokens=None,
                 use_fast=False,
                 n_fast_images=50,
                 fast_pool_size=4,
                 arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl',
                 preprocessor=None,
    ):
        assert lazy is True
        self.tokenizer = BUILDER.build(tokenizer)
        self.sampled_frames = sampled_frames
        assert offline_processed_text_folder or (json_file and tokenizer)
        self.lazy = lazy

        self.max_length = max_length

        self.template_map_fn = template_map_fn
        if isinstance(self.template_map_fn, dict) and self.lazy:
            _type = self.template_map_fn['type']
            del self.template_map_fn['type']
            self.template_map_fn = _type(**self.template_map_fn)

        if offline_processed_text_folder and json_file:
            print_log(
                'Both `offline_processed_text_folder` and '
                '`data_path` are set, and we load dataset from'
                '`offline_processed_text_folder` '
                f'({offline_processed_text_folder})',
                logger='current',
                level=logging.WARNING)

        if offline_processed_text_folder is not None:
            raise NotImplementedError
        else:
            json_datas = self.json_file_preprocess(json_file)
            self.json_datas = json_datas
            json_data = DatasetDict({'train': HFDataset.from_list(json_datas)})
            if self.lazy:
                self.text_data = build_origin_dataset(json_data, 'train')
            else:
                raise NotImplementedError

        self.image_folder = image_folder
        if extra_image_processor is not None:
            self.extra_image_processor = BUILDER.build(extra_image_processor)

        self.arch_type = arch_type
        if self.arch_type == 'qwen':
            self.IMG_CONTEXT_TOKEN = '<|image_pad|>'
            self.IMG_START_TOKEN = '<|vision_start|>'
            self.IMG_END_TOKEN = '<|vision_end|>'
        elif self.arch_type == 'llava':
            self.IMG_CONTEXT_TOKEN = '<image>'
            self.IMG_START_TOKEN = ''
            self.IMG_END_TOKEN = ''
        self.repeats = repeats

        self._system = ''

        self.downsample_ratio = 0.5
        if self.arch_type == 'llava':
            self.downsample_ratio = 1
        self.image_size = 448
        if self.arch_type == 'llava':
            self.image_size = 336
        patch_size = 14
        self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
        if self.arch_type == 'qwen':
            self.patch_token = 1

        if preprocessor is None:
            self.transformer = T.Compose([
                T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
                T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
                T.ToTensor(),
                T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
            ])
            self.preprocessor = None
        else:
            self.transformer = None
            self.preprocessor = BUILDER.build(preprocessor)

        self.arch_type = arch_type

        if special_tokens is not None:
            self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.use_fast = use_fast
        self.n_fast_images = n_fast_images
        self.fast_pool_size = fast_pool_size

        # for visualization debug
        self.save_folder = './work_dirs/video_debug/'
        self.cur_number = 0

        print("Video Chat dataset, include {} items.".format(len(self.text_data)))

    def __len__(self):
        return len(self.text_data) * self.repeats

    @property
    def modality_length(self):
        length_list = []
        for data_dict in self.text_data:
            cur_len = 10000
            length_list.append(cur_len)
        return length_list

    def real_len(self):
        return len(self.text_data)

    def json_file_preprocess(self, json_file):
        # prepare expression annotation files
        with open(json_file, 'r') as f:
            json_datas = json.load(f)
        return json_datas

    def dataset_map_fn(self, data_dict, select_k=5):
        assert 'video' in data_dict
        # video
        video_file = data_dict['video']
        video_file = os.path.join(self.image_folder, video_file)
        images = _get_rawvideo_dec(video_file, select_frames=select_k)
        if self.use_fast:
            fast_images = _get_rawvideo_dec(video_file, select_frames=self.n_fast_images)
        else:
            fast_images = None

        conversation = data_dict['conversations']

        # prepare text
        if self.use_fast:
            text_dict = self.prepare_text(
                select_k, conversation, num_image_tokens=self.patch_token,
                n_fast_images=len(fast_images),
            )
        else:
            text_dict = self.prepare_text(
                select_k, conversation, num_image_tokens=self.patch_token,
            )


        ret = {'images': images, 'conversation': text_dict['conversation'], 'fast_images': fast_images}
        return ret

    def prepare_text(self, n_frames, conversation, num_image_tokens=256, n_fast_images=0):

        if self.use_fast:
            fast_frame_token_str = f'{self.FAST_IMG_START_TOKEN}' \
                          f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_images * self.fast_pool_size * self.fast_pool_size}' \
                          f'{self.FAST_IMG_END_TOKEN}' + '\n'
        else:
            fast_frame_token_str = ''

        frame_token_str = f'{self.IMG_START_TOKEN}' \
                          f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                          f'{self.IMG_END_TOKEN}'

        questions = []
        answers = []

        for conv in conversation:
            if conv['from'] == 'human':
                questions.append(conv['value'].replace('<image>', ''))
            else:
                answers.append(conv['value'])
        assert len(questions) == len(answers)

        qa_list = []
        for i, (question, answer) in enumerate(zip(questions, answers)):
            if i == 0:
                frame_tokens = frame_token_str + '\n'
                # frame_tokens = '=' + ' '
                frame_tokens = frame_tokens * n_frames
                frame_tokens = frame_tokens.strip()
                frame_tokens = fast_frame_token_str + frame_tokens
                qa_list.append(
                    {'from': 'human', 'value': frame_tokens + question}
                )
            else:
                qa_list.append(
                    {'from': 'human', 'value': question}
                )
            qa_list.append(
                {'from': 'gpt', 'value': answer}
            )

        input = ''
        conversation = []
        for msg in qa_list:
            if msg['from'] == 'human':
                input += msg['value']
            elif msg['from'] == 'gpt':
                conversation.append({'input': input, 'output': msg['value']})
                input = ''
            else:
                raise NotImplementedError

        # add system information
        conversation[0].update({'system': self._system})
        return {'conversation': conversation}

    def __getitem__(self, index):
        index = index % self.real_len()
        selected_data_dict = copy.deepcopy(self.text_data[index])
        data_dict = self.dataset_map_fn(selected_data_dict, select_k=self.sampled_frames)


        assert 'images' in data_dict.keys()
        if self.use_fast:
            assert 'fast_images' in data_dict.keys()
        pixel_values = []
        num_video_tokens = None
        num_frame_tokens = None
        if data_dict.get('images', None) is not None:
            frames_files = data_dict['images']
            for frame_image in frames_files:
                frame_image = frame_image.convert('RGB')
                ori_width, ori_height = frame_image.size

                if self.preprocessor is not None:
                    pass
                else:
                    frame_image = self.transformer(frame_image)
                pixel_values.append(frame_image)

            if self.preprocessor is not None:
                if self.arch_type == 'qwen':
                    _data_dict = self.preprocessor(pixel_values, do_resize=True, size=(self.image_size, self.image_size))
                    _data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
                    _data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int)
                    num_frame_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2))
                    num_frames = _data_dict['image_grid_thw'].shape[0]
                    num_video_tokens = num_frame_tokens * num_frames
                elif self.arch_type == 'llava':
                    _data_dict = self.preprocessor(pixel_values, do_resize=True,
                                                   size=(self.image_size, self.image_size))
                    _data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0)
                    _data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
                else:
                    raise NotImplementedError
                data_dict.update(_data_dict)
            else:
                pixel_values = torch.stack(pixel_values, dim=0) # (n_f, 3, h, w)
                data_dict['pixel_values'] = pixel_values
        else:
            data_dict['pixel_values'] = torch.zeros(0, 3, self.image_size, self.image_size)
            data_dict['masks'] = None

        if num_video_tokens is not None:
            assert self.patch_token == 1
            input_str = data_dict['conversation'][0]['input']
            input_str = input_str.replace(self.IMG_CONTEXT_TOKEN, self.IMG_CONTEXT_TOKEN * num_frame_tokens)
            assert input_str.count(self.IMG_CONTEXT_TOKEN) == num_video_tokens
            data_dict['conversation'][0]['input'] = input_str

        result = self.template_map_fn(data_dict)
        data_dict.update(result)
        result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True)
        data_dict.update(result)

        # for fast branch
        if self.use_fast:
            fast_pixel_values = []
            frames_files = data_dict['fast_images']
            for frame_image in frames_files:
                frame_image = frame_image.convert('RGB')
                ori_width, ori_height = frame_image.size

                frame_image = self.transformer(frame_image)
                fast_pixel_values.append(frame_image)

            fast_pixel_values = torch.stack(fast_pixel_values, dim=0)  # (n_f, 3, h, w)
            data_dict['fast_pixel_values'] = fast_pixel_values


        # # for debug
        # self.visualization_debug(data_dict)
        # if self.cur_number < 10:
        #     return self[random.randint(0, len(self))]

        data_dict['type'] = 'video'
        return data_dict

    def visualization_debug(self, data_dict):
        save_folder = os.path.join(self.save_folder, 'sample_{}'.format(self.cur_number))
        if not os.path.exists(save_folder):
            os.mkdir(save_folder)
        self.cur_number += 1

        # images

        show_images = []

        pixel_values = data_dict['pixel_values']
        save_folder_image = os.path.join(save_folder, 'image')
        if not os.path.exists(save_folder_image):
            os.mkdir(save_folder_image)
        for i_image, image_pixel_value in enumerate(pixel_values):
            # print(image_pixel_value.shape)
            image_pixel_value[0] = image_pixel_value[0] * 0.2686
            image_pixel_value[1] = image_pixel_value[1] * 0.2613
            image_pixel_value[2] = image_pixel_value[2] * 0.2757
            image_pixel_value[0] = image_pixel_value[0] + 0.4814
            image_pixel_value[1] = image_pixel_value[1] + 0.4578
            image_pixel_value[2] = image_pixel_value[2] + 0.4082
            image_pixel_value = image_pixel_value * 255
            image_pixel_value = image_pixel_value.permute(1, 2, 0)
            image_pixel_value = image_pixel_value.to(torch.uint8).numpy()
            # print(os.path.join(save_folder_image, '{}.jpg'.format(i_image)))
            # print(image_pixel_value.shape)
            show_images.append(image_pixel_value)
            cv2.imwrite(os.path.join(save_folder_image, '{}.jpg'.format(i_image)), image_pixel_value)

        # text
        input_text = self.tokenizer.decode(data_dict['input_ids'], skip_special_tokens=False)
        with open(os.path.join(save_folder, 'text.json'), 'w') as f:
            json.dump([input_text], f)

        return