File size: 5,589 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) OpenMMLab. All rights reserved.
import collections
import os.path as osp
import random
from typing import Dict, List

import mmengine
from mmengine.dataset import BaseDataset

# from mmdet.registry import DATASETS


# @DATASETS.register_module()
class RefCocoDataset(BaseDataset):
    """RefCOCO dataset.

    The `Refcoco` and `Refcoco+` dataset is based on
    `ReferItGame: Referring to Objects in Photographs of Natural Scenes
    <http://tamaraberg.com/papers/referit.pdf>`_.

    The `Refcocog` dataset is based on
    `Generation and Comprehension of Unambiguous Object Descriptions
    <https://arxiv.org/abs/1511.02283>`_.

    Args:
        ann_file (str): Annotation file path.
        data_root (str): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to ''.
        data_prefix (str): Prefix for training data.
        split_file (str): Split file path.
        split (str): Split name. Defaults to 'train'.
        text_mode (str): Text mode. Defaults to 'random'.
        **kwargs: Other keyword arguments in :class:`BaseDataset`.
    """

    def __init__(self,
                 data_root: str,
                 ann_file: str,
                 split_file: str,
                 data_prefix: Dict,
                 split: str = 'train',
                 text_mode: str = 'random',
                 **kwargs):
        self.split_file = split_file
        self.split = split

        assert text_mode in ['original', 'random', 'concat', 'select_first']
        self.text_mode = text_mode
        super().__init__(
            data_root=data_root,
            data_prefix=data_prefix,
            ann_file=ann_file,
            **kwargs,
        )

    def _join_prefix(self):
        if not mmengine.is_abs(self.split_file) and self.split_file:
            self.split_file = osp.join(self.data_root, self.split_file)

        return super()._join_prefix()

    def _init_refs(self):
        """Initialize the refs for RefCOCO."""
        anns, imgs = {}, {}
        for ann in self.instances['annotations']:
            anns[ann['id']] = ann
        for img in self.instances['images']:
            imgs[img['id']] = img

        refs, ref_to_ann = {}, {}
        for ref in self.splits:
            # ids
            ref_id = ref['ref_id']
            ann_id = ref['ann_id']
            # add mapping related to ref
            refs[ref_id] = ref
            ref_to_ann[ref_id] = anns[ann_id]

        self.refs = refs
        self.ref_to_ann = ref_to_ann

    def load_data_list(self) -> List[dict]:
        """Load data list."""
        self.splits = mmengine.load(self.split_file, file_format='pkl')
        self.instances = mmengine.load(self.ann_file, file_format='json')
        self._init_refs()
        img_prefix = self.data_prefix['img_path']

        ref_ids = [
            ref['ref_id'] for ref in self.splits if ref['split'] == self.split
        ]
        full_anno = []
        for ref_id in ref_ids:
            ref = self.refs[ref_id]
            ann = self.ref_to_ann[ref_id]
            ann.update(ref)
            full_anno.append(ann)

        image_id_list = []
        final_anno = {}
        for anno in full_anno:
            image_id_list.append(anno['image_id'])
            final_anno[anno['ann_id']] = anno
        annotations = [value for key, value in final_anno.items()]

        coco_train_id = []
        image_annot = {}
        for i in range(len(self.instances['images'])):
            coco_train_id.append(self.instances['images'][i]['id'])
            image_annot[self.instances['images'][i]
                        ['id']] = self.instances['images'][i]

        images = []
        for image_id in list(set(image_id_list)):
            images += [image_annot[image_id]]

        data_list = []

        grounding_dict = collections.defaultdict(list)
        for anno in annotations:
            image_id = int(anno['image_id'])
            grounding_dict[image_id].append(anno)

        join_path = mmengine.fileio.get_file_backend(img_prefix).join_path
        for image in images:
            img_id = image['id']
            instances = []
            sentences = []
            for grounding_anno in grounding_dict[img_id]:
                texts = [x['raw'].lower() for x in grounding_anno['sentences']]
                # random select one text
                if self.text_mode == 'random':
                    idx = random.randint(0, len(texts) - 1)
                    text = [texts[idx]]
                # concat all texts
                elif self.text_mode == 'concat':
                    text = [''.join(texts)]
                # select the first text
                elif self.text_mode == 'select_first':
                    text = [texts[0]]
                # use all texts
                elif self.text_mode == 'original':
                    text = texts
                else:
                    raise ValueError(f'Invalid text mode "{self.text_mode}".')
                ins = [{
                    'mask': grounding_anno['segmentation'],
                    'ignore_flag': 0
                }] * len(text)
                instances.extend(ins)
                sentences.extend(text)
            data_info = {
                'img_path': join_path(img_prefix, image['file_name']),
                'img_id': img_id,
                'instances': instances,
                'text': sentences
            }
            data_list.append(data_info)

        if len(data_list) == 0:
            raise ValueError(f'No sample in split "{self.split}".')

        return data_list