Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,821 Bytes
d59f323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
from typing import Literal
import torch
import torch.nn as nn
import torch.nn.functional as F
from third_parts.mmdet.models.losses import CrossEntropyLoss
from xtuner.registry import BUILDER
from xtuner.model.utils import get_peft_model_state_dict
from .lisa import LisaModel
from xtuner.utils import PROMPT_TEMPLATE
from xtuner.tools.utils import get_stop_criteria
from transformers import GenerationConfig
from projects.llava_sam2.models.preprocess.image_resize import DirectResize
import numpy as np
from .internvl import InternVL_Slowfast
from .utils import dynamic_preprocess
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from pycocotools import mask as _mask
from types import MethodType
from xtuner.model.utils import guess_load_checkpoint
from mmcv.ops import point_sample
from third_parts.mmdet.models.utils import get_uncertain_point_coords_with_randomness
class VideoLLaVASAMModel(LisaModel):
def __init__(self,
mllm,
tokenizer,
grounding_encoder,
loss_mask=None,
loss_dice=None,
torch_dtype=torch.bfloat16,
pretrained_pth=None,
frozen_sam2_decoder=True,
special_tokens=None,
loss_sample_points=False,
num_points=12544,
# for slow fast arch
fast_pool=False,
fast_pool_size=4,
use_fast_supervision=False,
# for inference
phi3=True,
template=None,
# for arch selection
arch_type:Literal['intern_vl', 'qwen', 'llava']='intern_vl',
# for inference large model
split_model=False,
# ext
preprocessor=None,
# bs
bs:int=0,
):
super(LisaModel, self).__init__()
self.split_model = split_model
if split_model:
mllm.model_split = split_model
if special_tokens is None:
special_tokens = ['[SEG]']
self.special_tokens = special_tokens
if 'special_tokens' not in mllm.keys():
mllm.special_tokens = special_tokens
self.mllm = BUILDER.build(mllm)
self.arch_type = arch_type
self.fast_pool = fast_pool
self.fast_pool_size = fast_pool_size
if hasattr(self.mllm, '_post_init'):
self.mllm._post_init(
fast_pool_size=self.fast_pool_size,
fast_pool=self.fast_pool
)
else:
print("No _post_init() in mllm !!!")
self.tokenizer = BUILDER.build(tokenizer)
self._add_special_tokens()
self.grounding_encoder = BUILDER.build(grounding_encoder)
self.grounding_encoder.requires_grad_(False)
if not frozen_sam2_decoder:
self.grounding_encoder.sam2_model.sam_mask_decoder.requires_grad_(True)
if self.mllm.use_llm_lora:
if self.arch_type == 'intern_vl':
self.mllm.model.language_model.base_model.model.get_input_embeddings().requires_grad_(True)
self.mllm.model.language_model.base_model.model.get_output_embeddings().requires_grad_(True)
elif self.arch_type == 'qwen':
self.mllm.model.model.base_model.model.get_input_embeddings().requires_grad_(True)
self.mllm.model.get_output_embeddings().weight.requires_grad_(True)
elif self.arch_type == 'llava':
self.mllm.model.language_model.base_model.model.get_input_embeddings().requires_grad_(True)
self.mllm.model.language_model.base_model.model.get_output_embeddings().requires_grad_(True)
# self.mllm.model.language_model.base_model.model.lm_head.requires_grad_(True)
# self.mllm.model.language_model.base_model.model.model.embed_tokens.requires_grad_(True)
if self.arch_type == 'intern_vl':
in_dim = self.mllm.model.config.llm_config.hidden_size
elif self.arch_type == 'qwen':
in_dim = self.mllm.model.config.hidden_size
elif self.arch_type == 'llava':
# for llava, the hidden size is in language model
in_dim = self.mllm.model.language_model.config.hidden_size
out_dim = self.grounding_encoder.hidden_dim
self.text_hidden_fcs = nn.Sequential(
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
)
if use_fast_supervision:
self.text_exist_fcs = nn.Sequential(
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
nn.Linear(in_dim, 1), nn.Dropout(0.0)
)
self.loss_mask = BUILDER.build(loss_mask)
self.loss_dice = BUILDER.build(loss_dice)
if use_fast_supervision:
self.loss_exists = BUILDER.build(dict(
type=CrossEntropyLoss,
use_sigmoid=True,
reduction='mean',
loss_weight=1.0)
)
self.torch_dtype = torch_dtype
if pretrained_pth is not None:
pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
self.load_state_dict(pretrained_state_dict, strict=False)
print(f'Load pretrained weight from {pretrained_pth}')
self.loss_sample_points = loss_sample_points
self.num_points = num_points
self.oversample_ratio = 3.0
self.importance_sample_ratio = 0.75
if fast_pool:
self.fast_token_idx = self.tokenizer("<FAST_IMG_CONTEXT>", add_special_tokens=False).input_ids[0]
else:
self.fast_token_idx = None
self.use_fast_supervision = use_fast_supervision
self.phi3 = phi3
self.template = template
if preprocessor is None:
self.preprocessor = preprocessor
else:
self.preprocessor = BUILDER.build(preprocessor)
self.bs = bs
def _merge_lora(self):
# print('pre merge lora: ', self.mllm.model.language_model.base_model.model.get_input_embeddings().weight.shape)
try:
self.mllm.model.language_model = self.mllm.model.language_model.merge_and_unload()
except:
print("Skip language model, no LoRA in it !!!")
try:
self.mllm.model.vision_model = self.mllm.model.vision_model.merge_and_unload()
except:
print("Skip vision encoder, no LoRA in it !!!")
# print('after merge lora: ', self.mllm.model.language_model.get_input_embeddings().weight.shape)
return
def all_state_dict(self, *args, **kwargs):
state_dict = super(LisaModel, self).state_dict(*args, **kwargs)
return state_dict
def activation_checkpointing_disable(self):
if self.arch_type == 'qwen':
self.mllm.model.model.gradient_checkpointing_disable()
else:
self.mllm.model.language_model.gradient_checkpointing_disable()
def _add_special_tokens(self):
special_tokens = self.special_tokens
_num_new_tokens = self.tokenizer.add_tokens(special_tokens, special_tokens=True)
# if not isinstance(self.mllm.model.language_model.get_output_embeddings(), nn.Linear):
# print("Change the lm_head to nn.Linear !!!")
# transposed = False
# old_lm_head = self.mllm.model.language_model.get_output_embeddings()
# old_num_tokens, old_lm_head_dim = (
# old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
# )
# new_lm_head_shape = (old_lm_head_dim, len(tokenizer)) if not transposed else (
# len(tokenizer), old_lm_head_dim)
# has_new_lm_head_bias = old_lm_head.bias is not None
# new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias).to(self.device)
# new_lm_head.weight = old_lm_head.weight
# new_lm_head.bias = old_lm_head.bias
# self.mllm.model.language_model.set_output_embeddings(new_lm_head)
# this is already done in mllm
# if num_new_tokens > 0:
# self.mllm.model.language_model.resize_token_embeddings(len(self.tokenizer))
# assert isinstance(self.mllm, InternVL_Slowfast)
self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
def state_dict(self, *args, **kwargs):
state_dict = super(LisaModel, self).state_dict(*args, **kwargs)
from collections import OrderedDict
to_return = OrderedDict()
# Step 1. visual_encoder
if self.mllm.use_visual_encoder_lora:
to_return.update(
get_peft_model_state_dict(
self.mllm.model.vision_model, state_dict=state_dict))
raise NotImplementedError
elif not self.mllm.freeze_visual_encoder:
to_return.update({
k: v
for k, v in state_dict.items() if 'visual_encoder.' in k
})
raise NotImplementedError
# Step 2. LLM
if self.mllm.use_llm_lora:
if self.arch_type == 'intern_vl':
to_return.update(
get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict)
)
elif self.arch_type == 'qwen':
to_return.update(
get_peft_model_state_dict(self.mllm.model.model, state_dict=state_dict)
)
elif self.arch_type == 'llava':
to_return.update(
get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict)
)
elif not self.mllm.freeze_llm:
to_return.update(
{k: v
for k, v in state_dict.items() if 'llm.' in k})
raise NotImplementedError
# Step 3. Projector
to_return.update(
{k: v
for k, v in state_dict.items() if 'mlp1.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'model.multi_modal_projector.' in k})
# Step 4. mask decoder of grounding model (SAM/SAM2)
to_return.update(
{k: v
for k, v in state_dict.items() if 'mask_decoder' in k})
# Step 5. others (fcs)
to_return.update(
{k: v
for k, v in state_dict.items() if 'text_hidden_fcs.' in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'text_exist_fcs.' in k}
)
to_return.update(
{k: v
for k, v in state_dict.items() if 'lm_head.weight' in k or 'output' in k and 'sam2_model' not in k})
to_return.update(
{k: v
for k, v in state_dict.items() if 'embed_tokens.weight' in k or 'tok_embeddings' in k})
return to_return
def check_obj_number(self, pred_embeddings_list_video, gt_masks_video, fix_number=5):
assert len(pred_embeddings_list_video) == len(gt_masks_video)
ret_pred_embeddings_list_video = []
ret_gt_masks_video = []
for pred_mebeds, gt_masks in zip(pred_embeddings_list_video, gt_masks_video):
# assert len(pred_mebeds) == len(gt_masks)
if len(pred_mebeds) != len(gt_masks):
min_num = min(len(pred_mebeds), len(gt_masks))
pred_mebeds = pred_mebeds[:min_num]
gt_masks = gt_masks[:min_num]
if len(pred_mebeds) != fix_number:
if len(pred_mebeds) > fix_number:
_idxs = torch.randperm(pred_mebeds.shape[0])
_idxs = _idxs[:fix_number]
pred_mebeds = pred_mebeds[_idxs]
gt_masks = gt_masks[_idxs]
else:
n_repeat = fix_number // len(pred_mebeds) + 1
pred_mebeds = torch.cat([pred_mebeds] * n_repeat, dim=0)[:fix_number]
gt_masks = torch.cat([gt_masks] * n_repeat, dim=0)[:fix_number]
ret_pred_embeddings_list_video.append(pred_mebeds)
ret_gt_masks_video.append(gt_masks)
return ret_pred_embeddings_list_video, ret_gt_masks_video
def _get_pesudo_data(self, dtype, device):
assert self.bs > 0
g_pixel_values = torch.zeros((3, 1024, 1024), dtype=dtype, device=device)
g_pixel_values = [g_pixel_values] * self.bs
frames_per_batch = [1] * self.bs
gt_masks = torch.zeros((5, 256, 256), dtype=torch.uint8, device=device)
gt_masks = [gt_masks] * self.bs
return g_pixel_values, frames_per_batch, gt_masks
def forward(self, data, data_samples=None, mode='loss'):
g_pixel_values = data.pop('g_pixel_values', None)
gt_masks = data.pop('masks', None)
frames_per_batch = data.pop('frames_per_batch', None)
input_ids = data['input_ids']
fast_exists = data.pop('fast_exists', None)
# if self.arch_type == 'llava' and data.get('pixel_values', None) is not None:
# data['pixel_values'] = data['pixel_values'].to(self.torch_dtype)
if self.fast_pool:
output = self.mllm(data, data_samples, mode, fast_token_idx=self.fast_token_idx)
else:
output = self.mllm(data, data_samples, mode)
if gt_masks is None:
# require zero seg datas
seg_valid = False
g_pixel_values, frames_per_batch, gt_masks = self._get_pesudo_data(
dtype=self.torch_dtype,
device=input_ids.device,
)
else:
seg_valid = True
assert frames_per_batch, "Video Lisa require frames_per_batch !!!"
# print('frmaes_per_batch: ', frames_per_batch)
ori_size_list = []
for i_bs, mask in enumerate(gt_masks):
mask_shape = mask.shape[-2:]
ori_size_list += [mask_shape] * frames_per_batch[i_bs]
seg_token_mask = input_ids == self.seg_token_idx
hidden_states = output.hidden_states
hidden_states = self.text_hidden_fcs(hidden_states[-1])
_zero = hidden_states.mean() * 0.0
if seg_valid:
pred_embeddings = hidden_states[seg_token_mask] + _zero
else:
pred_embeddings = hidden_states[:, :5].flatten(0, 1) + _zero
seg_token_counts = seg_token_mask.int().sum(-1)
if not seg_valid:
seg_token_counts += 5
pred_embeddings_list_ = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
pred_embeddings_list = []
for item in pred_embeddings_list_:
if len(item) != 0:
pred_embeddings_list.append(item)
pred_embeddings_list_video, success = self.genetate_video_pred_embeddings(
pred_embeddings_list, frames_per_batch)
if not success:
raise NotImplementedError
if self.use_fast_supervision and fast_exists is not None:
# gt_exists = []
# for id_x, _fast_exists in enumerate(fast_exists):
# num_tot = _fast_exists.shape[0]
# num_conv = gt_masks[id_x].shape[0] // frames_per_batch[id_x]
# assert num_tot % num_conv == 0
# gt_exists.append(_fast_exists.reshape(num_conv, num_tot // num_conv))
fast_flag = input_ids == self.fast_token_idx
fast_tokens = output.hidden_states[-1][fast_flag]
exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2])
gt_exists = torch.cat(fast_exists)
loss_exists = self.loss_exists(exists_logit, gt_exists)
else:
loss_exists = None
gt_masks_video = self.process_video_gt_masks(gt_masks, frames_per_batch)
pred_embeddings_list_video, gt_masks_video = self.check_obj_number(
pred_embeddings_list_video, gt_masks_video
)
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
])
num_objs = pred_embeddings_list_video[0].shape[0]
num_frames = len(pred_embeddings_list_video)
language_embeddings = torch.cat(pred_embeddings_list_video, dim=0)[:, None]
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values, expand_size=num_objs)
pred_masks = self.grounding_encoder.inject_language_embd(sam_states, language_embeddings, nf_nobj=(num_frames, num_objs))
gt_masks = [F.interpolate(gt_mask.unsqueeze(0), size=pred_masks[0].shape[-2:], mode='nearest').squeeze(0) for gt_mask in gt_masks_video]
gt_masks = torch.cat(gt_masks, dim=0)
pred_masks = pred_masks.flatten(0, 1)
loss_mask, loss_dice = 0, 0
if len(pred_masks) != len(gt_masks):
# drop this data
print(f"Pred mask shape {pred_masks.shape} is not equal to gt_mask shape {gt_masks.shape} !!!")
min_num = min(len(pred_masks), len(gt_masks))
pred_masks = pred_masks[:min_num]
gt_masks = gt_masks[:min_num]
seg_valid = False
if self.loss_sample_points:
sampled_pred_mask, sampled_gt_mask = self.sample_points(pred_masks, gt_masks)
sam_loss_dice = self.loss_dice(
sampled_pred_mask,
sampled_gt_mask, avg_factor=(len(gt_masks) + 1e-4))
sam_loss_mask = self.loss_mask(
sampled_pred_mask.reshape(-1),
sampled_gt_mask.reshape(-1),
avg_factor=(pred_masks.shape[0] * sampled_pred_mask.shape[1] + 1e-4))
else:
sam_loss_mask = self.loss_mask(pred_masks, gt_masks)
sam_loss_dice = self.loss_dice(pred_masks, gt_masks)
loss_mask += sam_loss_mask
loss_dice += sam_loss_dice
if not seg_valid:
_scale = 0.0
else:
_scale = 1.0
loss_mask = loss_mask * _scale
loss_dice = loss_dice * _scale
loss_dict = {
'loss_mask': loss_mask,
'loss_dice': loss_dice,
'llm_loss': output.loss,
}
if loss_exists is not None:
loss_dict['loss_exists'] = loss_exists
return loss_dict
def sample_points(self, mask_pred, gt_masks):
gt_masks = gt_masks.unsqueeze(1)
gt_masks = gt_masks.to(mask_pred)
mask_pred = mask_pred.unsqueeze(1)
# (N, 1, h, w)
with torch.no_grad():
points_coords = get_uncertain_point_coords_with_randomness(
mask_pred.to(torch.float32), None, self.num_points,
self.oversample_ratio, self.importance_sample_ratio)
# shape (num_total_gts, h, w) -> (num_total_gts, num_points)
mask_point_targets = point_sample(
gt_masks.float(), points_coords).squeeze(1)
# shape (num_queries, h, w) -> (num_queries, num_points)
mask_point_preds = point_sample(
mask_pred.to(torch.float32), points_coords.to(torch.float32)).squeeze(1)
return mask_point_preds.to(mask_pred.dtype), mask_point_targets.to(mask_pred.dtype)
def genetate_video_pred_embeddings(self, pred_embeddings_list, frames_per_batch):
if len(pred_embeddings_list) == len(frames_per_batch):
success = True
else:
success = False
print("len(pred_embeddings_list):{} is not equal to len(frames_per_batch):{} !!!".format(len(pred_embeddings_list), len(frames_per_batch)))
pred_embeddings_list_video = []
for pred_embedding_batch, frame_nums in zip(pred_embeddings_list, frames_per_batch):
pred_embeddings_list_video += [pred_embedding_batch] * frame_nums
return pred_embeddings_list_video, success
def process_video_gt_masks(self, gt_masks, frames_per_batch):
gt_masks_video = []
assert len(gt_masks) == len(frames_per_batch)
for gt_masks_batch, frames_num in zip(gt_masks, frames_per_batch):
N, H, W = gt_masks_batch.shape
assert N % frames_num == 0
gt_masks_batch = gt_masks_batch.reshape(
N // frames_num, frames_num, H, W)
for i in range(frames_num):
gt_masks_video.append(gt_masks_batch[:, i])
return gt_masks_video
def preparing_for_generation(self, metainfo, **kwargs):
# set stop criteria and generation configs for model
assert hasattr(self, 'tokenizer'), "The Model does not have the tokenizer!!!"
self.bot_name = 'BOT'
if 'template' in metainfo.keys():
template = metainfo['template']
else:
template = PROMPT_TEMPLATE['phi3_chat']
if self.template is None:
self.template = template
stop_words = []
stop_words += self.template.get('STOP_WORDS', [])
stop_criteria = get_stop_criteria(
tokenizer=self.tokenizer, stop_words=stop_words)
self.stop_criteria = stop_criteria
default_generation_kwargs = dict(
max_new_tokens=512,
do_sample=False,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=(
self.tokenizer.pad_token_id
if self.tokenizer.pad_token_id is not None
else self.tokenizer.eos_token_id
),
)
default_generation_kwargs.update(metainfo.get('generation_kwargs', {}))
self.gen_config = GenerationConfig(**default_generation_kwargs)
self.init_prediction_config = True
self.mllm.to(self.torch_dtype)
self.text_hidden_fcs.to(self.torch_dtype)
# if getattr(self, 'text_exist_fcs', None) is not None:
# self.text_exist_fcs.to(self.torch_dtype)
# for sam image processor
self.extra_image_processor = DirectResize(target_length=1024, )
# for multi image process
self.min_dynamic_patch = 1
if 'max_dynamic_patch' in metainfo.keys():
self.max_dynamic_patch = metainfo['max_dynamic_patch']
else:
self.max_dynamic_patch = 12
self.downsample_ratio = 0.5
self.image_size = 448
self.use_thumbnail = True
patch_size = 14
self.patch_size = patch_size
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
self.IMAGENET_STD = (0.229, 0.224, 0.225)
self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
self.IMG_START_TOKEN = '<img>'
self.IMG_END_TOKEN = '</img>'
if self.arch_type == 'qwen':
self.IMG_CONTEXT_TOKEN = '<|image_pad|>'
self.IMG_START_TOKEN = ''
self.IMG_END_TOKEN = ''
if self.preprocessor is None:
self.transformer = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
self.preprocessor = None
else:
self.transformer = None
# self.preprocessor = BUILDER.build(self.preprocessor)
self.VP_START_TOKEN = '<vp>'
self.VP_END_TOKEN = '</vp>'
# change phi3 prepare for generation fuction
if self.phi3:
self.mllm.model.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation, self.mllm.model.language_model)
return
def predict_video(self, pixel_values, text_prompts, **kwargs):
ori_h, ori_w = kwargs['ori_height'], kwargs['ori_width']
_input_ids = kwargs['input_ids']
g_pixel_values = kwargs.pop('g_pixel_values', None)
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
])
fast_pixel_values = kwargs.pop('fast_pixel_values', None)
if fast_pixel_values is None:
fast_token_idx = None
else:
fast_token_idx = self.fast_token_idx
predictions = []
pred_masks = []
is_exists_list = []
for input_ids in _input_ids:
input_ids = torch.tensor(input_ids).unsqueeze(0)
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
pixel_values = pixel_values.to(dtype=self.torch_dtype)
if fast_pixel_values is not None:
fast_pixel_values = fast_pixel_values.to(dtype=self.torch_dtype)
mm_inputs = {
'pixel_values': pixel_values,
'input_ids': input_ids,
'attention_mask': attention_mask,
'position_ids': None,
'past_key_values': None,
'labels': None,
'fast_pixel_values': fast_pixel_values,
'fast_token_idx': fast_token_idx,
}
if kwargs.get('image_grid_thw', None) is not None:
mm_inputs['image_grid_thw'] = kwargs['image_grid_thw']
generate_output = self.mllm.generate(
**mm_inputs,
generation_config=self.gen_config,
streamer=None,
bos_token_id=self.tokenizer.bos_token_id,
stopping_criteria=self.stop_criteria,
output_hidden_states=True,
return_dict_in_generate=True
)
predict = self.tokenizer.decode(generate_output.sequences[0], skip_special_tokens=False).strip()
# input_text = self.tokenizer.decode(mm_inputs['input_ids'][0], skip_special_tokens=False)
# print(input_text, generate_output.sequences[0], '\n', predict, self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0])
predictions.append(predict)
hidden_states = generate_output.hidden_states
last_hidden_states = [item[-1][0] for item in hidden_states]
last_hidden_states = torch.cat(last_hidden_states, dim=0)
seg_hidden_states = get_seg_hidden_states(
last_hidden_states, generate_output.sequences[0][:-1],
seg_id=self.seg_token_idx
)
if len(seg_hidden_states) == 0:
print("Warning, no [SEG] tokens !!!")
pred_masks.append(torch.zeros((g_pixel_values.shape[0], ori_h, ori_w), dtype=torch.int))
continue
elif len(seg_hidden_states) > 1:
print("Warning, {} [SEG] tokens !!!".format(len(seg_hidden_states)))
seg_hidden_states = seg_hidden_states[:1]
seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)
seg_hidden_states = seg_hidden_states.to(dtype=torch.float32)
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
# TODO: change 5
if len(pixel_values) < 5:
pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * pixel_values.shape[0])
else:
pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * 5)
pred_mask = F.interpolate(
pred_mask,
size=(ori_h, ori_w),
mode='bilinear',
align_corners=False,
)
pred_mask = pred_mask[:, 0]
pred_mask = pred_mask.sigmoid() > 0.5
pred_mask = pred_mask.int()
# supervision
if self.use_fast_supervision and (input_ids == self.fast_token_idx).sum() > 0:
fast_flag = input_ids.squeeze(0) == self.fast_token_idx
len_out = generate_output.sequences[0][:-1].shape[0]
fast_tokens = last_hidden_states[:-len_out][fast_flag].to(dtype=torch.float32)
exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2])
is_exists = exists_logit.squeeze(-1).sigmoid() > 0.5
is_exists_list.append(is_exists)
not_exists = torch.logical_not(is_exists)
if torch.any(not_exists):
pred_mask[not_exists] = pred_mask[not_exists] * 0
pred_masks.append(pred_mask)
assert len(pred_masks) == len(text_prompts)
ret_dict = {
'prediction': predictions,
'prediction_masks': [mask_to_rle(_item.cpu().numpy()) for _item in pred_masks],
}
if 'id' in kwargs.keys():
ret_dict['id'] = kwargs['id']
if len(is_exists_list) > 0:
ret_dict['is_exists'] = is_exists_list
return ret_dict
def get_seg_hidden_states(hidden_states, output_ids, seg_id):
seg_mask = output_ids == seg_id
n_out = len(seg_mask)
return hidden_states[-n_out:][seg_mask]
def mask_to_rle(mask):
rle = []
for m in mask:
rle.append(_mask.encode(np.asfortranarray(m.astype(np.uint8))))
rle[-1]['counts'] = rle[-1]['counts'].decode()
return rle
from transformers.cache_utils import Cache, DynamicCache
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0):
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
model_inputs.update(
{
'position_ids': position_ids,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
}
)
return model_inputs
class VideoLLaVASAMModel_zero3(VideoLLaVASAMModel):
def __init__(self,
mllm,
tokenizer,
grounding_encoder,
loss_mask=None,
loss_dice=None,
torch_dtype=torch.bfloat16,
pretrained_pth=None,
frozen_sam2_decoder=True,
special_tokens=['[SEG]', ],
loss_sample_points=False,
num_points=12544,
# for slow fast arch
fast_pool=False,
fast_pool_size=4,
arch_type='intern_vl',
# zero3
bs=1,
):
super(VideoLLaVASAMModel_zero3, self).__init__(
mllm=mllm,
tokenizer=tokenizer,
grounding_encoder=grounding_encoder,
loss_mask=loss_mask,
loss_dice=loss_dice,
torch_dtype=torch_dtype,
pretrained_pth=pretrained_pth,
frozen_sam2_decoder=frozen_sam2_decoder,
special_tokens=special_tokens,
loss_sample_points=loss_sample_points,
num_points=num_points,
# for slow fast arch
fast_pool=fast_pool,
fast_pool_size=fast_pool_size,
arch_type=arch_type,
)
self.bs = bs
def _get_pesudo_data(self, dtype, device):
g_pixel_values = torch.zeros((3, 1024, 1024), dtype=dtype, device=device)
g_pixel_values = [g_pixel_values] * self.bs
frames_per_batch = [1] * self.bs
gt_masks = torch.zeros((5, 256, 256), dtype=torch.uint8, device=device)
gt_masks = [gt_masks] * self.bs
return g_pixel_values, frames_per_batch, gt_masks
def forward(self, data, data_samples=None, mode='loss'):
g_pixel_values = data.pop('g_pixel_values', None)
gt_masks = data.pop('masks', None)
frames_per_batch = data.pop('frames_per_batch', None)
input_ids = data['input_ids']
if self.fast_pool:
output = self.mllm(data, data_samples, mode, fast_token_idx=self.fast_token_idx)
else:
output = self.mllm(data, data_samples, mode)
if gt_masks is None:
# require zero seg datas
seg_valid = False
g_pixel_values, frames_per_batch, gt_masks = self._get_pesudo_data(
dtype=self.torch_dtype,
device=input_ids.device,
)
else:
seg_valid = True
assert frames_per_batch, "Video Lisa require frames_per_batch !!!"
# print('frmaes_per_batch: ', frames_per_batch)
ori_size_list = []
for i_bs, mask in enumerate(gt_masks):
mask_shape = mask.shape[-2:]
ori_size_list += [mask_shape] * frames_per_batch[i_bs]
seg_token_mask = input_ids == self.seg_token_idx
hidden_states = output.hidden_states
hidden_states = self.text_hidden_fcs(hidden_states[-1])
_zero = hidden_states.mean() * 0.0
if seg_valid:
pred_embeddings = hidden_states[seg_token_mask] + _zero
else:
pred_embeddings = hidden_states[:, :5].flatten(0, 1) + _zero
seg_token_counts = seg_token_mask.int().sum(-1)
if not seg_valid:
seg_token_counts += 5
pred_embeddings_list_ = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
pred_embeddings_list = []
for item in pred_embeddings_list_:
if len(item) != 0:
pred_embeddings_list.append(item)
pred_embeddings_list_video, success = self.genetate_video_pred_embeddings(
pred_embeddings_list, frames_per_batch)
if not success:
raise NotImplementedError
# return {'llm_loss': output.loss, 'loss_mask': output.loss * 0.0, 'loss_dice': output.loss * 0.0}
gt_masks_video = self.process_video_gt_masks(gt_masks, frames_per_batch)
pred_embeddings_list_video, gt_masks_video = self.check_obj_number(
pred_embeddings_list_video, gt_masks_video
)
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
])
# print(f"Done, {g_pixel_values.device} !!!\n\n")
num_objs = pred_embeddings_list_video[0].shape[0]
num_frames = len(pred_embeddings_list_video)
language_embeddings = torch.cat(pred_embeddings_list_video, dim=0)[:, None]
# print(f"Done, {g_pixel_values.device} !!! {num_frames}---{num_objs}, {language_embeddings.shape}\n\n")
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values, expand_size=num_objs)
pred_masks = self.grounding_encoder.inject_language_embd(sam_states, language_embeddings, nf_nobj=(num_frames, num_objs))
gt_masks = [F.interpolate(gt_mask.unsqueeze(0), size=pred_masks[0].shape[-2:], mode='nearest').squeeze(0) for gt_mask in gt_masks_video]
gt_masks = torch.cat(gt_masks, dim=0)
pred_masks = pred_masks.flatten(0, 1)
# pred_masks = torch.cat(pred_masks, dim=0)
bs = len(pred_masks)
loss_mask, loss_dice = 0, 0
if len(pred_masks) != len(gt_masks):
# drop this data
print(f"Pred mask shape {pred_masks.shape} is not equal to gt_mask shape {gt_masks.shape} !!!")
min_num = min(len(pred_masks), len(gt_masks))
pred_masks = pred_masks[:min_num]
gt_masks = gt_masks[:min_num]
seg_valid = False
if self.loss_sample_points:
sampled_pred_mask, sampled_gt_mask = self.sample_points(pred_masks, gt_masks)
sam_loss_dice = self.loss_dice(
sampled_pred_mask,
sampled_gt_mask, avg_factor=(len(gt_masks) + 1e-4))
sam_loss_mask = self.loss_mask(
sampled_pred_mask.reshape(-1),
sampled_gt_mask.reshape(-1),
avg_factor=(pred_masks.shape[0] * sampled_pred_mask.shape[1] + 1e-4))
else:
sam_loss_mask = self.loss_mask(pred_masks, gt_masks)
sam_loss_dice = self.loss_dice(pred_masks, gt_masks)
loss_mask += sam_loss_mask
loss_dice += sam_loss_dice
if not seg_valid:
_scale = 0.0
else:
_scale = 1.0
loss_mask = loss_mask * _scale
loss_dice = loss_dice * _scale
loss_dict = {
'loss_mask': loss_mask,
'loss_dice': loss_dice,
'llm_loss': output.loss,
}
return loss_dict
|