Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,098 Bytes
d59f323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
from abc import ABCMeta, abstractmethod
from typing import List, Optional, Tuple
from torch import Tensor
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv import ops
from mmcv.cnn import ConvModule, Linear
from mmengine.model import BaseModule
class BaseRoIExtractor(BaseModule, metaclass=ABCMeta):
"""Base class for RoI extractor.
Args:
roi_layer (:obj:`ConfigDict` or dict): Specify RoI layer type and
arguments.
out_channels (int): Output channels of RoI layers.
featmap_strides (list[int]): Strides of input feature maps.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict], optional): Initialization config dict. Defaults to None.
"""
def __init__(self,
roi_layer,
out_channels: int,
featmap_strides: List[int],
init_cfg=None) -> None:
super().__init__(init_cfg=init_cfg)
self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides)
self.out_channels = out_channels
self.featmap_strides = featmap_strides
@property
def num_inputs(self) -> int:
"""int: Number of input feature maps."""
return len(self.featmap_strides)
def build_roi_layers(self, layer_cfg,
featmap_strides: List[int]) -> nn.ModuleList:
"""Build RoI operator to extract feature from each level feature map.
Args:
layer_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and
config RoI layer operation. Options are modules under
``mmcv/ops`` such as ``RoIAlign``.
featmap_strides (list[int]): The stride of input feature map w.r.t
to the original image size, which would be used to scale RoI
coordinate (original image coordinate system) to feature
coordinate system.
Returns:
:obj:`nn.ModuleList`: The RoI extractor modules for each level
feature map.
"""
cfg = layer_cfg.copy()
layer_type = cfg.pop('type')
if isinstance(layer_type, str):
assert hasattr(ops, layer_type)
layer_cls = getattr(ops, layer_type)
else:
layer_cls = layer_type
roi_layers = nn.ModuleList(
[layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides])
return roi_layers
def roi_rescale(self, rois: Tensor, scale_factor: float) -> Tensor:
"""Scale RoI coordinates by scale factor.
Args:
rois (Tensor): RoI (Region of Interest), shape (n, 5)
scale_factor (float): Scale factor that RoI will be multiplied by.
Returns:
Tensor: Scaled RoI.
"""
cx = (rois[:, 1] + rois[:, 3]) * 0.5
cy = (rois[:, 2] + rois[:, 4]) * 0.5
w = rois[:, 3] - rois[:, 1]
h = rois[:, 4] - rois[:, 2]
new_w = w * scale_factor
new_h = h * scale_factor
x1 = cx - new_w * 0.5
x2 = cx + new_w * 0.5
y1 = cy - new_h * 0.5
y2 = cy + new_h * 0.5
new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1)
return new_rois
@abstractmethod
def forward(self,
feats: Tuple[Tensor],
rois: Tensor,
roi_scale_factor: Optional[float] = None) -> Tensor:
"""Extractor ROI feats.
Args:
feats (Tuple[Tensor]): Multi-scale features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
roi_scale_factor (Optional[float]): RoI scale factor.
Defaults to None.
Returns:
Tensor: RoI feature.
"""
pass
class MLVLFuseModule(nn.Module):
def __init__(self, input_dims=1024, embed_dims=1024, num_levels=3, num_fuse=4):
super(MLVLFuseModule, self).__init__()
self.embed_dims = embed_dims
self.num_levels = num_levels
self.num_fuse = num_fuse
self.input_dims = input_dims
self.shuffle_channles = embed_dims // 4
# contains the tuple of level indices that will do the interaction
self.fuse_lvl_list = []
num_levels = self.num_levels
for lvl in range(num_levels):
top_lvl = min(lvl + 1, num_levels - 1)
dow_lvl = max(lvl - 1, 0)
tar_lvl = lvl
self.fuse_lvl_list.append((tar_lvl, top_lvl, dow_lvl))
self.remain_chs = self.embed_dims - self.shuffle_channles * 2
self._init_layers()
def generate_coordinate(self, featmap_sizes, device='cuda'):
x_range = torch.linspace(-1, 1, featmap_sizes[-1], device=device)
y_range = torch.linspace(-1, 1, featmap_sizes[-2], device=device)
y, x = torch.meshgrid(y_range, x_range)
y = y.expand([featmap_sizes[0], 1, -1, -1])
x = x.expand([featmap_sizes[0], 1, -1, -1])
coord_feat = torch.cat([x, y], 1)
return coord_feat
def _init_layers(self):
self.input_conv = nn.ModuleList([nn.Conv2d(self.input_dims + 2,
self.embed_dims, 1)
for _ in range(self.num_levels)])
self.fuse_convs = nn.ModuleList()
for i in range(self.num_fuse):
self.fuse_convs.append(
ConvModule(self.embed_dims,
self.embed_dims,
3,
stride=1,
padding=3 // 2,
conv_cfg=None,
norm_cfg=dict(type='GN',
num_groups=64,
requires_grad=True)
))
def init_weights(self):
pass
def _single_shuffle(self, inputs, conv_module):
if not isinstance(conv_module, (nn.ModuleList, list)):
conv_module = [conv_module]
for single_conv_m in conv_module:
fused_inputs = []
for fuse_lvl_tuple in self.fuse_lvl_list:
tar_lvl, top_lvl, dow_lvl = fuse_lvl_tuple
tar_input = inputs[tar_lvl]
top_input = inputs[top_lvl]
down_input = inputs[dow_lvl]
remain = tar_input[:, :self.remain_chs]
from_top = top_input[:, self.remain_chs:][:, self.shuffle_channles:]
from_top = F.interpolate(from_top.to(torch.float32),
size=tar_input.shape[-2:],
mode='bilinear',
align_corners=True)
from_down = down_input[:, self.remain_chs:][:, :self.shuffle_channles]
from_down = F.interpolate(from_down.to(torch.float32),
size=tar_input.shape[-2:],
mode='bilinear',
align_corners=True)
fused_inputs.append(
torch.cat([remain, from_top.to(remain.dtype), from_down.to(remain.dtype)], dim=1))
fused_inputs = [single_conv_m(item) for item in fused_inputs]
inputs = fused_inputs
return inputs
def forward(self, inputs, ):
feat_size = [item.shape for item in inputs]
new_inputs = []
for feat, single_feat_size in zip(inputs, feat_size):
coord_feat = self.generate_coordinate(
single_feat_size, device=inputs[0].device)
# feat = torch.cat([feat, coord_feat], dim=1)
feat = torch.cat([feat, coord_feat.to(feat.dtype)], dim=1)
new_inputs.append(feat)
inputs = new_inputs
inputs = [self.input_conv[lvl](item)
for lvl, item in enumerate(inputs)]
for conv_m in self.fuse_convs:
inputs = self._single_shuffle(inputs, [conv_m])
return inputs
class MlvlRoIExtractor(BaseRoIExtractor):
def __init__(self,
roi_layer,
out_channels,
featmap_strides,
embed_dims=1024,
stride=1,
norm_init=True,
fuse_level=3,
finest_scale=56,
init_cfg=None):
super(MlvlRoIExtractor, self).__init__(roi_layer, out_channels,
featmap_strides, init_cfg)
self.embed_dims = embed_dims
self.finest_scale = finest_scale
self.fuse_level = fuse_level
self.norm_init = norm_init
self.pconvs = nn.ModuleList(
nn.Conv2d(self.embed_dims, self.embed_dims, 3, stride=1, padding=1)
for _ in range(self.fuse_level))
self.pos_embedd = nn.Sequential(
nn.Linear(4, 256),
nn.ReLU(inplace=True),
nn.LayerNorm(256),
nn.Linear(256, 1024),
nn.ReLU(inplace=True),
nn.LayerNorm(1024),
)
self.updims = nn.Linear(1024, 4096)
self.flatten_linear = nn.Linear(
self.embed_dims * self.roi_layers[0].output_size[0] ** 2, 1024)
self.norm_init_weights()
# self.dtype = torch.float32
def norm_init_weights(self):
pass
def forward(self, feats, rois, roi_scale_factor=None):
"""Forward function."""
num_imgs = len(rois)
# feats = [item for item in feats]
batch_rois = torch.cat(rois, dim=0).to(feats[0].dtype)
pos_embedd = self.pos_embedd(batch_rois)
out_size = self.roi_layers[0].output_size
num_levels = len(feats)
if feats[0].dim() == 3:
h = w = int(math.sqrt(feats[0].shape[1]))
assert h == 16
assert w == 16
b, c = feats[0].shape[0], feats[0].shape[-1]
feats = [item.reshape(b, h, w, c).permute(0, 3, 1, 2)
for item in feats]
new_rois = []
for img_id, single_img_roi in enumerate(rois):
# rescale to original img scale
single_img_roi = single_img_roi * 224
roi_img_id = single_img_roi.new_ones(len(single_img_roi)) * img_id
single_img_roi = torch.cat(
[roi_img_id[:, None], single_img_roi], dim=1)
new_rois.append(single_img_roi)
rois = torch.cat(new_rois)
roi_feats = feats[0].new_zeros(self.fuse_level,
rois.size(0), self.out_channels, *out_size)
for i in range(num_levels):
if len(rois) > 0:
rois_ = rois
ori_dtype = feats[i].dtype
roi_feats_t = self.roi_layers[i](feats[i].to(
torch.float32), rois_.to(torch.float32))
roi_feats[i] = roi_feats_t.to(ori_dtype)
else:
roi_feats += sum(
x.view(-1)[0]
for x in self.parameters()) * 0. + feats[i].sum() * 0.
fuse_roi_feats = []
for i in range(self.fuse_level):
fuse_roi_feats.append(self.pconvs[i](roi_feats[i]))
fuse_roi_feats = sum(fuse_roi_feats)
fuse_roi_feats = F.relu(fuse_roi_feats)
fuse_roi_feats = fuse_roi_feats.flatten(1, -1)
fuse_roi_feats = self.flatten_linear(fuse_roi_feats)
fuse_roi_feats = fuse_roi_feats + pos_embedd
fuse_roi_feats = self.updims(fuse_roi_feats)
query_feats = []
for i in range(num_imgs):
mask = rois[:, 0] == i
query_feats.append(fuse_roi_feats[mask])
return query_feats
class MLVLROIQueryModule(nn.Module):
def __init__(self, embed_dims=1024, out_dims=4096,
num_levels=3):
super(MLVLROIQueryModule, self).__init__()
self.mlvl_fuse = MLVLFuseModule(input_dims=embed_dims,
embed_dims=embed_dims,
num_levels=num_levels,
num_fuse=5)
strids = [14 / 8, 14 / 4, 14 / 2, 14]
assert len(strids) == num_levels
bbox_roi_extractor = dict(roi_layer=dict(type='RoIAlign',
output_size=14,
sampling_ratio=2),
out_channels=embed_dims,
embed_dims=embed_dims,
fuse_level=num_levels,
featmap_strides=strids)
self.roi_align = MlvlRoIExtractor(**bbox_roi_extractor)
def forward(self, mlvl_feats, bboxes):
if mlvl_feats[0].dim() == 3:
h = w = int(math.sqrt(mlvl_feats[0].shape[1]))
assert h == 24
assert w == 24
b, c = mlvl_feats[0].shape[0], mlvl_feats[0].shape[-1]
mlvl_feats = [item.reshape(b, h, w, c).permute(0, 3, 1, 2) for item in mlvl_feats]
base_shape = mlvl_feats[0].shape[-2:]
num_level = len(mlvl_feats)
to_shape = [(base_shape[0] * 2 ** level, base_shape[1] * 2 ** level)
for level in range(num_level)]
to_shape = to_shape[::-1]
for level in range(num_level):
feat = mlvl_feats[level]
shape = to_shape[level]
# feat = feat
# mlvl_feats[level] = F.interpolate(feat, size=shape, mode='bilinear', align_corners=True)
# todo: temporary fix for "upsample_bilinear2d_out_frame" not implemented for 'BFloat16'
feat = feat.to(torch.float32)
mlvl_feats[level] = F.interpolate(
feat, size=shape, mode='bilinear', align_corners=True)
mlvl_feats[level] = mlvl_feats[level].to(torch.bfloat16)
mlvl_feats = self.mlvl_fuse(mlvl_feats)
return self.roi_align(mlvl_feats, bboxes)
|