Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,785 Bytes
d59f323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
import logging
import os
from typing import Literal
import torch
from datasets import Dataset as HFDataset
from datasets import DatasetDict
from mmengine import print_log
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import build_origin_dataset
import copy
from .encode_fn import video_lisa_encode_fn
import json
import random
import pycocotools.mask as maskUtils
import cv2
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
SEG_QUESTIONS = [
"Can you segment the {class_name} in this image?",
"Please segment {class_name} in this image.",
"What is {class_name} in this image? Please respond with segmentation mask.",
"What is {class_name} in this image? Please output segmentation mask.",
"Can you segment the {class_name} in this image",
"Please segment {class_name} in this image",
"What is {class_name} in this image? Please respond with segmentation mask",
"What is {class_name} in this image? Please output segmentation mask",
"Could you provide a segmentation mask for the {class_name} in this image?",
"Please identify and segment the {class_name} in this image.",
"Where is the {class_name} in this picture? Please respond with a segmentation mask.",
"Can you highlight the {class_name} in this image with a segmentation mask?",
"Could you provide a segmentation mask for the {class_name} in this image",
"Please identify and segment the {class_name} in this image",
"Where is the {class_name} in this picture? Please respond with a segmentation mask",
"Can you highlight the {class_name} in this image with a segmentation mask",
]
ANSWER_LIST = [
"It is [SEG].",
"Sure, [SEG].",
"Sure, it is [SEG].",
"Sure, the segmentation result is [SEG].",
"[SEG].",
]
class VideoReVOSDataset(Dataset):
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
FAST_IMG_CONTEXT_TOKEN = '<FAST_IMG_CONTEXT>'
FAST_IMG_START_TOKEN = '<fast_img>'
FAST_IMG_END_TOKEN = '</fast_img>'
def __init__(self,
image_folder,
expression_file,
mask_file,
extra_image_processor=None,
tokenizer=None,
select_number=5,
sampled_frames=10,
offline_processed_text_folder=None,
template_map_fn=None,
max_length=2048,
lazy=True,
repeats=1,
special_tokens=None,
frame_contiguous_sample=False,
use_fast=False,
arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl',
preprocessor=None,
# only work if use_fast = True
n_fast_images=50,
fast_pool_size=4,
fast_token_after_question=False,
):
assert lazy is True
self.tokenizer = BUILDER.build(tokenizer)
self.select_number = select_number
self.sampled_frames = sampled_frames
assert offline_processed_text_folder or (expression_file and tokenizer)
self.lazy = lazy
self.max_length = max_length
self.template_map_fn = template_map_fn
if isinstance(self.template_map_fn, dict) and self.lazy:
_type = self.template_map_fn['type']
del self.template_map_fn['type']
self.template_map_fn = _type(**self.template_map_fn)
if offline_processed_text_folder and expression_file:
print_log(
'Both `offline_processed_text_folder` and '
'`data_path` are set, and we load dataset from'
'`offline_processed_text_folder` '
f'({offline_processed_text_folder})',
logger='current',
level=logging.WARNING)
self.arch_type = arch_type
if self.arch_type == 'qwen':
self.IMG_CONTEXT_TOKEN = '<|image_pad|>'
self.IMG_START_TOKEN = '<|vision_start|>'
self.IMG_END_TOKEN = '<|vision_end|>'
elif self.arch_type == 'llava':
self.IMG_CONTEXT_TOKEN = '<image>'
self.IMG_START_TOKEN = ''
self.IMG_END_TOKEN = ''
if offline_processed_text_folder is not None:
raise NotImplementedError
else:
vid2metaid, metas, mask_dict = self.json_file_preprocess(expression_file, mask_file)
self.vid2metaid = vid2metaid
self.videos = list(self.vid2metaid.keys())
self.mask_dict = mask_dict
self.json_datas = metas
json_datas = metas
json_data = DatasetDict({'train': HFDataset.from_list(json_datas)})
if self.lazy:
self.text_data = build_origin_dataset(json_data, 'train')
else:
raise NotImplementedError
self.image_folder = image_folder
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.down_ratio = 1
self.repeats = repeats
self._system = ''
self.downsample_ratio = 0.5
if self.arch_type == 'llava':
self.downsample_ratio = 1
self.image_size = 448
if self.arch_type == 'llava':
self.image_size = 336
patch_size = 14
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
if self.arch_type == 'qwen':
self.patch_token = 1
if preprocessor is None:
self.transformer = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
self.preprocessor = None
else:
self.transformer = None
self.preprocessor = BUILDER.build(preprocessor)
if special_tokens is not None:
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.use_fast = use_fast
self.n_fast_images = n_fast_images
self.fast_pool_size = fast_pool_size
self.frame_contiguous_sample = frame_contiguous_sample
# for visualization debug
self.save_folder = './work_dirs/video_debug/'
self.cur_number = 0
# exist_thr
self.exist_thr = 8
self.fast_token_after_question = fast_token_after_question
if self.fast_token_after_question:
assert self.use_fast
print("Video res dataset, include {} items.".format(len(self.vid2metaid)))
def __len__(self):
return len(self.vid2metaid) * self.repeats
@property
def modality_length(self):
length_list = []
for data_dict in self.vid2metaid:
cur_len = 10000
length_list.append(cur_len)
return length_list
def real_len(self):
return len(self.vid2metaid)
def json_file_preprocess(self, expression_file, mask_file):
# prepare expression annotation files
with open(expression_file, 'r') as f:
expression_datas = json.load(f)['videos']
metas = []
anno_count = 0 # serve as anno_id
vid2metaid = {}
for vid_name in expression_datas:
vid_express_data = expression_datas[vid_name]
vid_frames = sorted(vid_express_data['frames'])
vid_len = len(vid_frames)
exp_id_list = sorted(list(vid_express_data['expressions'].keys()))
for exp_id in exp_id_list:
exp_dict = vid_express_data['expressions'][exp_id]
meta = {}
meta['video'] = vid_name
meta['exp'] = exp_dict['exp'] # str
meta['mask_anno_id'] = exp_dict['anno_id']
if 'obj_id' in exp_dict.keys():
meta['obj_id'] = exp_dict['obj_id']
else:
meta['obj_id'] = [0, ] # Ref-Youtube-VOS only has one object per expression
meta['anno_id'] = [str(anno_count), ]
anno_count += 1
meta['frames'] = vid_frames
meta['exp_id'] = exp_id
meta['length'] = vid_len
metas.append(meta)
if vid_name not in vid2metaid.keys():
vid2metaid[vid_name] = []
vid2metaid[vid_name].append(len(metas) - 1)
# process mask annotation files
with open(mask_file, 'rb') as f:
mask_dict = json.load(f)
return vid2metaid, metas, mask_dict
def create_img_to_refs_mapping(self, refs_train):
img2refs = {}
for ref in refs_train:
img2refs[ref["image_id"]] = img2refs.get(ref["image_id"], []) + [ref, ]
return img2refs
def decode_mask(self, video_masks, image_size):
ret_masks = []
for object_masks in video_masks:
# None object
if len(object_masks) == 0:
if len(ret_masks) != 0:
_object_masks = ret_masks[0] * 0
else:
_object_masks = np.zeros(
(self.sampled_frames, image_size[0], image_size[1]), dtype=np.uint8)
else:
_object_masks = []
for i_frame in range(len(object_masks[0])):
_mask = np.zeros(image_size, dtype=np.uint8)
for i_anno in range(len(object_masks)):
if object_masks[i_anno][i_frame] is None:
continue
m = maskUtils.decode(object_masks[i_anno][i_frame])
if m.ndim == 3:
m = m.sum(axis=2).astype(np.uint8)
else:
m = m.astype(np.uint8)
_mask = _mask | m
_object_masks.append(_mask)
_object_masks = np.stack(_object_masks, axis=0)
# if self.pad_image_to_square:
# _object_masks = expand2square_mask(_object_masks)
ret_masks.append(_object_masks)
_shape = ret_masks[0].shape
for item in ret_masks:
if item.shape != _shape:
print([_ret_mask.shape for _ret_mask in ret_masks])
return None
ret_masks = np.stack(ret_masks, axis=0) # (n_obj, n_frames, h, w)
ret_masks = torch.from_numpy(ret_masks)
# ret_masks = F.interpolate(ret_masks, size=(self.image_size // self.down_ratio,
# self.image_size // self.down_ratio), mode='nearest')
ret_masks = ret_masks.flatten(0, 1)
return ret_masks
def dataset_map_fn(self, data_dict, select_k=5):
images = []
len_frames = len(data_dict[0]['frames'])
for objet_info in data_dict:
assert len_frames == len(objet_info['frames'])
# prepare images, random select k frames
if len_frames > select_k + 1:
if self.frame_contiguous_sample and random.random() < 0.5:
# do contiguous sample
selected_start_frame = np.random.choice(len_frames - select_k, 1, replace=False)
selected_frame_indexes = [selected_start_frame[0] + _i for _i in range(select_k)]
else:
selected_frame_indexes = np.random.choice(len_frames, select_k, replace=False)
else:
selected_frame_indexes = np.random.choice(len_frames, select_k, replace=True)
selected_frame_indexes.sort()
if self.use_fast:
# sample fast branch
fast_interval = len_frames / (self.n_fast_images + 1e-4)
sampled_fast_frame_idxs = [min(int(i * fast_interval), len_frames - 1) for i in range(self.n_fast_images)]
fast_video_frames = []
for selected_frame_index in sampled_fast_frame_idxs:
frame_id = data_dict[0]['frames'][selected_frame_index]
fast_video_frames.append(os.path.join(data_dict[0]['video'], frame_id + '.jpg'))
else:
fast_video_frames = None
sampled_fast_frame_idxs = None
for selected_frame_index in selected_frame_indexes:
frame_id = data_dict[0]['frames'][selected_frame_index]
images.append(os.path.join(data_dict[0]['video'], frame_id + '.jpg'))
# prepare text
expressions = [object_info['exp'] for object_info in data_dict]
if self.use_fast:
text_dict = self.prepare_text(select_k, expressions, num_image_tokens=self.patch_token,
n_fast_images=len(fast_video_frames),)
else:
text_dict = self.prepare_text(select_k, expressions, num_image_tokens=self.patch_token)
# prepare masks
video_masks = []
for object_info in data_dict:
anno_ids = object_info['mask_anno_id']
# print('anno_ids: ', anno_ids)
obj_masks = []
for anno_id in anno_ids:
anno_id = str(anno_id)
frames_masks = self.mask_dict[anno_id]
frames_masks_ = []
for frame_idx in selected_frame_indexes:
frames_masks_.append(copy.deepcopy(frames_masks[frame_idx]))
obj_masks.append(frames_masks_)
video_masks.append(obj_masks)
if self.use_fast:
fast_video_masks = []
assert sampled_fast_frame_idxs is not None
for object_info in data_dict:
anno_ids = object_info['mask_anno_id']
obj_masks = []
for anno_id in anno_ids:
anno_id = str(anno_id)
frames_masks = self.mask_dict[anno_id]
frames_masks_ = []
for frame_idx in sampled_fast_frame_idxs:
frames_masks_.append(copy.deepcopy(frames_masks[frame_idx]))
obj_masks.append(frames_masks_)
fast_video_masks.append(obj_masks)
else:
fast_video_masks = None
ret = {'images': images, 'video_masks': video_masks, 'conversation': text_dict['conversation'],
'fast_images': fast_video_frames, 'fast_video_masks': fast_video_masks}
return ret
def prepare_text(self, n_frames, expressions, num_image_tokens=256, n_fast_images=50):
if self.use_fast and not self.fast_token_after_question:
fast_frame_token_str = f'{self.FAST_IMG_START_TOKEN}' \
f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_images * self.fast_pool_size * self.fast_pool_size}' \
f'{self.FAST_IMG_END_TOKEN}' + '\n'
else:
fast_frame_token_str = ''
frame_token_str = f'{self.IMG_START_TOKEN}' \
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
f'{self.IMG_END_TOKEN}'
if self.fast_token_after_question:
assert self.use_fast
after_question_str = f'{self.FAST_IMG_START_TOKEN}' \
f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_images * self.fast_pool_size * self.fast_pool_size}' \
f'{self.FAST_IMG_END_TOKEN}'
else:
after_question_str = ''
questions = []
answers = []
for i, exp in enumerate(expressions):
# the exp is a question
if '?' in exp:
questions.append(exp)
else:
exp = exp.replace('.', '').strip()
question_template = random.choice(SEG_QUESTIONS)
questions.append(question_template.format(class_name=exp.lower()))
answers.append(random.choice(ANSWER_LIST))
qa_list = []
for i, (question, answer) in enumerate(zip(questions, answers)):
if i == 0:
frame_tokens = frame_token_str + '\n'
# frame_tokens = '=' + ' '
frame_tokens = frame_tokens * n_frames
frame_tokens = frame_tokens.strip()
frame_tokens = fast_frame_token_str + frame_tokens
qa_list.append(
{'from': 'human', 'value': frame_tokens + question + after_question_str}
)
else:
qa_list.append(
{'from': 'human', 'value': question + after_question_str}
)
qa_list.append(
{'from': 'gpt', 'value': answer}
)
input = ''
conversation = []
for msg in qa_list:
if msg['from'] == 'human':
input += msg['value']
elif msg['from'] == 'gpt':
conversation.append({'input': input, 'output': msg['value']})
input = ''
else:
raise NotImplementedError
# add system information
conversation[0].update({'system': self._system})
return {'conversation': conversation}
def __getitem__(self, index):
index = index % self.real_len()
selected_video_objects = self.vid2metaid[self.videos[index]]
video_objects_infos = [copy.deepcopy(self.text_data[idx]) for idx in selected_video_objects]
if len(video_objects_infos) > self.select_number:
selected_indexes = np.random.choice(len(video_objects_infos), self.select_number)
video_objects_infos = [video_objects_infos[_idx] for _idx in selected_indexes]
else:
selected_indexes = np.random.choice(len(video_objects_infos), self.select_number, replace=True)
video_objects_infos = [video_objects_infos[_idx] for _idx in selected_indexes]
data_dict = self.dataset_map_fn(video_objects_infos, select_k=self.sampled_frames)
assert 'images' in data_dict.keys()
pixel_values = []
extra_pixel_values = []
num_video_tokens = None
num_frame_tokens = None
if data_dict.get('images', None) is not None:
frames_files = data_dict['images']
frames_files = [os.path.join(self.image_folder, frame_file) for frame_file in frames_files]
for frame_path in frames_files:
frame_image = Image.open(frame_path).convert('RGB')
ori_width, ori_height = frame_image.size
if self.extra_image_processor is not None:
g_image = np.array(frame_image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
extra_pixel_values.append(g_pixel_values)
if self.preprocessor is not None:
pass
else:
frame_image = self.transformer(frame_image)
pixel_values.append(frame_image)
if self.preprocessor is not None:
if self.arch_type == 'qwen':
_data_dict = self.preprocessor(pixel_values, do_resize=True, size=(self.image_size, self.image_size))
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
_data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int)
num_frame_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2))
num_frames = _data_dict['image_grid_thw'].shape[0]
num_video_tokens = num_frame_tokens * num_frames
elif self.arch_type == 'llava':
_data_dict = self.preprocessor(pixel_values, do_resize=True, size=(self.image_size, self.image_size))
_data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0)
_data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
else:
raise NotImplementedError
data_dict.update(_data_dict)
else:
pixel_values = torch.stack(pixel_values, dim=0) # (n_f, 3, h, w)
data_dict['pixel_values'] = pixel_values
if self.extra_image_processor is not None:
data_dict['g_pixel_values'] = extra_pixel_values
# process and get masks
masks = self.decode_mask(data_dict['video_masks'], image_size=(ori_height, ori_width))
if masks is None:
return self.__getitem__(random.randint(0, self.real_len()))
data_dict['masks'] = masks
else:
data_dict['pixel_values'] = torch.zeros(0, 3, self.image_size, self.image_size)
data_dict['masks'] = None
if num_video_tokens is not None:
assert self.patch_token == 1
input_str = data_dict['conversation'][0]['input']
input_str = input_str.replace(self.IMG_CONTEXT_TOKEN, self.IMG_CONTEXT_TOKEN * num_frame_tokens)
assert input_str.count(self.IMG_CONTEXT_TOKEN) == num_video_tokens
data_dict['conversation'][0]['input'] = input_str
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length)
data_dict.update(result)
# for fast branch
if self.use_fast:
fast_pixel_values = []
frames_files = data_dict['fast_images']
frames_files = [os.path.join(self.image_folder, frame_file) for frame_file in frames_files]
for frame_path in frames_files:
frame_image = Image.open(frame_path).convert('RGB')
ori_width, ori_height = frame_image.size
frame_image = self.transformer(frame_image)
fast_pixel_values.append(frame_image)
fast_pixel_values = torch.stack(fast_pixel_values, dim=0) # (n_f, 3, h, w)
data_dict['fast_pixel_values'] = fast_pixel_values
# process and get masks
masks = self.decode_mask(data_dict['fast_video_masks'], image_size=(ori_height, ori_width))
if masks is None:
return self.__getitem__(random.randint(0, self.real_len()))
data_dict['fast_exists'] = masks.to(dtype=torch.int).sum(dim=(-2, -1)).ge(self.exist_thr).unsqueeze(-1)
del data_dict['fast_video_masks']
data_dict['type'] = 'video'
return data_dict
def visualization_debug(self, data_dict):
save_folder = os.path.join(self.save_folder, 'sample_{}'.format(self.cur_number))
if not os.path.exists(save_folder):
os.mkdir(save_folder)
self.cur_number += 1
# images
show_images = []
pixel_values = data_dict['pixel_values']
save_folder_image = os.path.join(save_folder, 'image')
if not os.path.exists(save_folder_image):
os.mkdir(save_folder_image)
for i_image, image_pixel_value in enumerate(pixel_values):
# print(image_pixel_value.shape)
image_pixel_value[0] = image_pixel_value[0] * 0.2686
image_pixel_value[1] = image_pixel_value[1] * 0.2613
image_pixel_value[2] = image_pixel_value[2] * 0.2757
image_pixel_value[0] = image_pixel_value[0] + 0.4814
image_pixel_value[1] = image_pixel_value[1] + 0.4578
image_pixel_value[2] = image_pixel_value[2] + 0.4082
image_pixel_value = image_pixel_value * 255
image_pixel_value = image_pixel_value.permute(1, 2, 0)
image_pixel_value = image_pixel_value.to(torch.uint8).numpy()
# print(os.path.join(save_folder_image, '{}.jpg'.format(i_image)))
# print(image_pixel_value.shape)
show_images.append(image_pixel_value)
cv2.imwrite(os.path.join(save_folder_image, '{}.jpg'.format(i_image)), image_pixel_value)
# text
input_text = self.tokenizer.decode(data_dict['input_ids'], skip_special_tokens=False)
with open(os.path.join(save_folder, 'text.json'), 'w') as f:
json.dump([input_text], f)
# masks
save_folder_mask = os.path.join(save_folder, 'mask')
if not os.path.exists(save_folder_mask):
os.mkdir(save_folder_mask)
n_frames = len(pixel_values)
masks = data_dict['masks']
_, h, w = masks.shape
masks = masks.reshape(-1, n_frames, h, w)
for i_obj, obj_masks in enumerate(masks):
save_folder_mask_obj_folder = os.path.join(save_folder_mask, 'obj_{}'.format(i_obj))
if not os.path.exists(save_folder_mask_obj_folder):
os.mkdir(save_folder_mask_obj_folder)
for i_frame, f_mask in enumerate(obj_masks):
f_mask = f_mask.numpy()
f_mask = f_mask * 255
f_mask = np.stack([f_mask * 1, f_mask * 0, f_mask * 0], axis=2)
f_mask = show_images[i_frame] * 0.3 + 0.7 * f_mask
f_mask = f_mask.astype(np.uint8)
cv2.imwrite(os.path.join(save_folder_mask_obj_folder, '{}.png'.format(i_frame)), f_mask)
return
|