File size: 7,378 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import copy
import random
import glob
import json
import logging
import os
import torch

from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils

from xtuner.registry import BUILDER

from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn

from projects.glamm.datasets.utils.utils import expand2square

from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN

from third_parts.mmdet.datasets.refcoco import RefCocoDataset


class ReferSegmDataset(RefCocoDataset):
    def __init__(self,
                 data_root,
                 ann_file=None,
                 split_file=None,
                 image_processor=None,
                 extra_image_processor=None,
                 data_prefix=dict(img_path='train2014/'),
                 tokenizer=None,
                 template_map_fn=None,
                 max_length=2048,
                 pad_image_to_square=False,
                 num_classes_per_sample=3):
        super().__init__(
            data_root=data_root,
            data_prefix=data_prefix,
            pipeline=None,
            ann_file=ann_file,
            split_file=split_file,
        )
        self.begin_str = f"""{DEFAULT_IMAGE_TOKEN} provides an overview of the picture.\n"""

        self.question_templates = SEG_QUESTIONS
        if extra_image_processor is not None:
            self.extra_image_processor = BUILDER.build(extra_image_processor)
        self.num_classes_per_sample = num_classes_per_sample
        self.tokenizer = BUILDER.build(tokenizer)

        self.tokenizer.add_tokens(
            [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
        )
        reg_tokens = ['<bbox>', '<point>']
        segmentation_tokens = ['[SEG]']
        phrase_tokens = ['<p>', '</p>']
        special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
        self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.max_length = max_length
        self.template_map_fn = BUILDER.build(template_map_fn)

        self.image_processor = BUILDER.build(image_processor)
        size = self.image_processor.crop_size
        if isinstance(size, dict):
            self.image_w, self.image_h = size['width'], size['height']
        self.pad_image_to_square = pad_image_to_square

    @property
    def modality_length(self):
        import pickle
        length_list = []
        for idx in range(len(self)):
            length_list.append(100)
        # for idx in range(len(self)):
        #     if self.serialize_data:
        #         start_addr = 0 if idx == 0 else self.data_address[idx - 1].item()
        #         end_addr = self.data_address[idx].item()
        #         bytes = memoryview(
        #             self.data_bytes[start_addr:end_addr])  # type: ignore
        #         data_dict = pickle.loads(bytes) 
        #     else:
        #         data_dict = copy.deepcopy(self.data_list[idx])
        return length_list

    def _parse_annotations(self, ann_info):
        image_path = ann_info['img_path']
        image = Image.open(image_path).convert('RGB')
        if hasattr(self, 'extra_image_processor'):
            g_image = np.array(image)  # for grounding
            g_image = self.extra_image_processor.apply_image(g_image)
            g_pixel_values = torch.from_numpy(
                g_image).permute(2, 0, 1).contiguous()
            ann_info['g_pixel_values'] = g_pixel_values

        width, height = image.size
        if self.pad_image_to_square:
            image = expand2square(
                image, tuple(int(x * 255) for x in self.image_processor.image_mean))
        image = self.image_processor.preprocess(
            image, return_tensors='pt')['pixel_values'][0]
        ann_info['pixel_values'] = image

        masks, phrases = [], []
        instances, text = ann_info['instances'], ann_info['text']
        index = np.random.choice(range(len(instances)), min(
            len(instances), self.num_classes_per_sample))
        for idx in index:
            inst = instances[idx]
            phrase = text[idx].lower()
            phrases.append(phrase)
            binary_mask = np.zeros((height, width), dtype=np.uint8)
            for seg in inst["mask"]:
                rles = mask_utils.frPyObjects([seg], height, width)
                m = mask_utils.decode(rles)
                m = m.astype(np.uint8)
                binary_mask += m.squeeze()
            masks.append(binary_mask)

        ann_info.update({
            'masks': masks,
            'phrases': phrases,
        })
        return ann_info

    def __getitem__(self, idx):
        data_dict = {}
        ann_info = super().__getitem__(idx)
        ann_info = self._parse_annotations(ann_info)

        data_dict['g_pixel_values'] = ann_info.pop('g_pixel_values')
        data_dict['pixel_values'] = ann_info.pop('pixel_values')
        if len(ann_info['masks']) == 0:
            return self.__getitem__(0)
        data_dict['masks'] = torch.from_numpy(
            np.stack(ann_info['masks'], axis=0))

        conversation = []
        for i, phrase in enumerate(ann_info['phrases']):
            question = random.choice(SEG_QUESTIONS).format(class_name=phrase)
            conversation.append(
                {'input': question, 'output': random.choice(ANSWER_LIST)})

        data_dict['conversation'] = conversation
        result = self.template_map_fn(data_dict)
        data_dict.update(result)

        result = encode_fn(data_dict, tokenizer=self.tokenizer,
                           max_length=self.max_length, with_image_token=True)
        data_dict.update(result)

        return data_dict

if __name__ == '__main__':
    from transformers import CLIPImageProcessor, AutoTokenizer
    from third_parts.segment_anything.utils.transforms import ResizeLongestSide
    pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
    llm_name_or_path = 'lmsys/vicuna-7b-v1.5'

    tokenizer = dict(
        type=AutoTokenizer.from_pretrained,
        pretrained_model_name_or_path=llm_name_or_path)
    image_processor = dict(
        type=CLIPImageProcessor.from_pretrained,
        pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
    extra_image_processor = dict(
        type=ResizeLongestSide,
        target_length=1024,
    )
    from xtuner.utils.templates import PROMPT_TEMPLATE
    prompt_template = PROMPT_TEMPLATE.vicuna
    from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
    from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn

    dataset = ReferSegmDataset(
        tokenizer=tokenizer,
        image_processor=image_processor,
        template_map_fn=dict(
            type=template_map_fn_factory, template=prompt_template),
        extra_image_processor=extra_image_processor,
        data_root='data/coco/',
        data_prefix=dict(img_path='train2014/'),
        ann_file='refcoco+/instances.json',
        split_file='refcoco+/refs(unc).p',
    )
    for i in range(1000):
        dataset[i]