File size: 17,710 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
                            LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from torch.optim import AdamW
from transformers import AutoTokenizer

from xtuner.dataset import ConcatDataset
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine.hooks import DatasetInfoHook
from xtuner.engine.runner import TrainLoop
from xtuner.utils import PROMPT_TEMPLATE
from xtuner.dataset.map_fns import template_map_fn_factory

from third_parts.mmdet.models.losses import DiceLoss, CrossEntropyLoss
from peft import LoraConfig

from projects.llava_sam2.models.internvl import InternVL_Slowfast

from projects.llava_sam2.models import VideoLLaVASAMModel, SAM2TrainRunner, VideoLLaVASAMModel_zero3
from projects.llava_sam2.datasets import VideoReVOSDataset, VideoMeVISDataset, VideoRefYoutubeVOSDataset, video_lisa_collate_fn, VideoSAM2Dataset
from projects.llava_sam2.datasets import VideoChatUniViDataset
from projects.llava_sam2.datasets import RefCOCOgGCGDataset, OpenPsgGCGDataset, FlickrGCGDataset, GranDfGCGDataset, OspreyDataset, OspreyDescriptionDataset, OspreyShortDescriptionDataset
from projects.llava_sam2.datasets import LLaVADataset
from projects.llava_sam2.datasets import ReferSegmDataset
from projects.llava_sam2.models.preprocess.image_resize import DirectResize

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
path = './pretrained/InternVL2_5-4B'
pretrained_pth = None

# Data
prompt_template = PROMPT_TEMPLATE.phi3_chat
max_length = 8192

# Scheduler & Optimizer
batch_size = 2  # per_device
accumulative_counts = 4
dataloader_num_workers = 4
max_epochs = 1
optim_type = AdamW
# official 1024 -> 4e-5
# lr = 1e-6
lr = 4e-5
betas = (0.9, 0.999)
weight_decay = 0.05
max_norm = 1  # grad clip
warmup_ratio = 0.05

# Save
save_steps = 1000
save_total_limit = 2  # Maximum checkpoints to keep (-1 means unlimited)

special_tokens = ['[SEG]', '<p>', '</p>', '<vp>', '</vp>']

tokenizer = dict(
    type=AutoTokenizer.from_pretrained,
    pretrained_model_name_or_path=path,
    trust_remote_code=True,
    padding_side='right')

extra_image_processor = dict(
    type=DirectResize,
    target_length=1024,
)
#######################################################################
#            PART 2  Model & Tokenizer & Image Processor              #
#######################################################################
model = dict(
    type=VideoLLaVASAMModel_zero3,
    special_tokens=special_tokens,
    frozen_sam2_decoder=False,
    mllm=dict(
        type=InternVL_Slowfast,
        model_path=path,
        freeze_llm=True,
        freeze_visual_encoder=True,
        llm_lora=dict(
            type=LoraConfig,
            r=128,
            lora_alpha=256,
            lora_dropout=0.05,
            bias='none',
            task_type='CAUSAL_LM'),
        special_tokens=special_tokens,
    ),
    tokenizer=tokenizer,
    grounding_encoder=dict(
        type=SAM2TrainRunner,
    ),
    loss_mask=dict(
        type=CrossEntropyLoss,
        use_sigmoid=True,
        reduction='mean',
        loss_weight=2.0),
    loss_dice=dict(
        type=DiceLoss,
        use_sigmoid=True,
        activate=True,
        reduction='mean',
        naive_dice=True,
        eps=1.0,
        loss_weight=0.5),
    pretrained_pth=pretrained_pth,
    loss_sample_points=True,
    # loss_sample_points=False,
    bs=batch_size,
)

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################


VIDEO_DATAS = './data/video_datas/'
IMG_DATAS = './data/image_datas/'

############### video res
data_root_revos = './data/video_datas/revos/'
video_revos_image_folder = data_root_revos
video_revos_expression_file = data_root_revos + 'meta_expressions_train_.json'
video_revos_mask_file = data_root_revos + 'mask_dict.json'

data_root_mevis = './data/video_datas/mevis/train/'
video_mevis_image_folder = data_root_mevis + 'JPEGImages'
video_mevis_expression_file = data_root_mevis + 'meta_expressions.json'
video_mevis_mask_file = data_root_mevis + 'mask_dict.json'

data_root_refytvos = './data/video_datas/rvos/'
video_refytvos_image_folder = data_root_refytvos + 'train/JPEGImages/'
video_refytvos_expression_file = data_root_refytvos + 'meta_expressions/train/meta_expressions.json'
video_refytvos_mask_file = data_root_refytvos + 'mask_dict.pkl'

video_revos_dataset = dict(
    type=VideoReVOSDataset,
    image_folder=video_revos_image_folder,
    expression_file=video_revos_expression_file,
    mask_file=video_revos_mask_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=10,
    special_tokens=special_tokens,
    extra_image_processor=extra_image_processor,
    sampled_frames=5,
)

video_mevis_dataset = dict(
    type=VideoMeVISDataset,
    image_folder=video_mevis_image_folder,
    expression_file=video_mevis_expression_file,
    mask_file=video_mevis_mask_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=4,
    special_tokens=special_tokens,
    extra_image_processor=extra_image_processor,
    sampled_frames=5,
)

video_refytvos_dataset = dict(
    type=VideoRefYoutubeVOSDataset,
    image_folder=video_refytvos_image_folder,
    expression_file=video_refytvos_expression_file,
    mask_file=video_refytvos_mask_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=4,
    special_tokens=special_tokens,
    extra_image_processor=extra_image_processor,
    sampled_frames=5,
)

################### Video chat
data_root_video_chatunivi = VIDEO_DATAS + 'video_vlm/video_chat/'
video_chatunivi_image_folder = data_root_video_chatunivi + 'Activity_Videos/'
video_chatunivi_json_file = data_root_video_chatunivi+ 'video_chat.json'

video_qa_dataset = dict(
    type=VideoChatUniViDataset,
    image_folder=video_chatunivi_image_folder,
    json_file=video_chatunivi_json_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=1,
    special_tokens=special_tokens,
    extra_image_processor=extra_image_processor,
    sampled_frames=5,
)

################## image chat
llava_vqa_dataset = dict(
    type=LLaVADataset,
    tokenizer=tokenizer,
    data_path='data/llava_data/LLaVA-Instruct-150K/llava_v1_5_mix665k.json',
    prompt_template=prompt_template,
    special_tokens=special_tokens,
    image_folder='data/llava_data/llava_images/',
)

################## image res
refcoco_segm_dataset=dict(
    type=ReferSegmDataset,
    tokenizer=tokenizer,
    special_tokens=special_tokens,
    extra_image_processor=extra_image_processor,
    data_root='data/ref_seg/refcoco',
    data_prefix=dict(img_path='coco2014/train2014/'),
    ann_file='instances.json',
    split_file='refs(unc).p',
    prompt_template=prompt_template,
    num_classes_per_sample=5,
    max_length=max_length,
)
refcoco_plus_segm_dataset=dict(
    type=ReferSegmDataset,
    tokenizer=tokenizer,
    special_tokens=special_tokens,
    extra_image_processor=extra_image_processor,
    data_root='data/ref_seg/refcoco+',
    data_prefix=dict(img_path='coco2014/train2014/'),
    ann_file='instances.json',
    split_file='refs(unc).p',
    prompt_template=prompt_template,
    num_classes_per_sample=5,
    max_length=max_length,
)
refcocog_segm_dataset=dict(
    type=ReferSegmDataset,
    tokenizer=tokenizer,
    special_tokens=special_tokens,
    extra_image_processor=extra_image_processor,
    data_root='data/ref_seg/refcocog',
    data_prefix=dict(img_path='coco2014/train2014/'),
    ann_file='instances.json',
    split_file='refs(umd).p',
    prompt_template=prompt_template,
    num_classes_per_sample=5,
    max_length=max_length,
)

# image gcg datas
glamm_data_root = './data/glamm_data/'

refcocog_image_path = glamm_data_root + 'images/coco2014/train2014/'
refcocog_ann_file = glamm_data_root + 'annotations/RefCOCOg_GCG_train.json'

grandf_image_path = glamm_data_root + 'images/grandf/train/'
grandf_ann_file = glamm_data_root + 'annotations/GranDf_HA_GCG_train.json'

flickr_image_path = glamm_data_root + 'images/flickr30k/Flickr30K/'
flickr_ann_file = glamm_data_root + 'annotations/flickr_mergedGT_GCG_train.json'

psg_image_path = glamm_data_root + 'images/coco2017/'
psg_ann_file = glamm_data_root + 'annotations/OpenPsgGCG_train.json'

glamm_refcocog_dataset = dict(
    type=RefCOCOgGCGDataset,
    image_folder=refcocog_image_path,
    data_path=refcocog_ann_file,
    tokenizer=tokenizer,
    max_length=max_length,
    special_tokens=special_tokens,
    template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
    extra_image_processor=extra_image_processor,
    lazy=True,
    repeats=1,
)

glamm_grandf_dataset = dict(
    type=GranDfGCGDataset,
    data_path=grandf_ann_file,
    image_folder=grandf_image_path,
    tokenizer=tokenizer,
    max_length=max_length,
    special_tokens=special_tokens,
    template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
    extra_image_processor=extra_image_processor,
    lazy=True,
    repeats=10,
)

glamm_psg_dataset = dict(
    type=OpenPsgGCGDataset,
    data_path=psg_ann_file,
    image_folder=psg_image_path,
    tokenizer=tokenizer,
    max_length=max_length,
    special_tokens=special_tokens,
    template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
    extra_image_processor=extra_image_processor,
    lazy=True,
    repeats=1,
)

glamm_flickr_dataset = dict(
    type=FlickrGCGDataset,
    data_path=flickr_ann_file,
    image_folder=flickr_image_path,
    tokenizer=tokenizer,
    max_length=max_length,
    special_tokens=special_tokens,
    template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
    extra_image_processor=extra_image_processor,
    lazy=True,
    repeats=1,
)

# sam2 data
data_sam2_folder = VIDEO_DATAS + 'segmentation_datasets/sam_v_full/'
data_sam2_expression_file = './whole_pesudo_cap_v3/sam_v_final_v3.json'

video_sam2_dataset = dict(
    type=VideoSAM2Dataset,
    sam2_folder=data_sam2_folder,
    expression_file=data_sam2_expression_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=4,
    special_tokens=special_tokens,
    extra_image_processor=extra_image_processor,
    sampled_frames=5,
    select_number=5,
)

# osprey
data_osprey_file = VIDEO_DATAS + 'osprey-724k/Osprey-724K/osprey_conversation.json'
data_osprey_image_folders = [
    IMG_DATAS+ 'coco/train2014/',
    IMG_DATAS + 'coco/val2014/',
    IMG_DATAS + 'coco/train2017/',
    IMG_DATAS + 'coco/val2017/',
]

image_osprey_dataset = dict(
    type=OspreyDataset,
    image_folder=data_osprey_image_folders,
    data_path=data_osprey_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=1,
    special_tokens=special_tokens,
)

data_osprey_detail_description_file = VIDEO_DATAS + 'osprey-724k/Osprey-724K/osprey_detail_description.json'
image_osprey_description_dataset = dict(
    type=OspreyDescriptionDataset,
    image_folder=data_osprey_image_folders,
    data_path=data_osprey_detail_description_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=1,
    special_tokens=special_tokens,
)

data_osprey_short_file = VIDEO_DATAS + 'osprey-724k/Osprey-724K/osprey_short_form.json'
image_osprey_short_dataset = dict(
    type=OspreyShortDescriptionDataset,
    image_folder=data_osprey_image_folders,
    data_path=data_osprey_short_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=1,
    special_tokens=special_tokens,
)

data_osprey_part_file = VIDEO_DATAS + 'osprey-724k/Osprey-724K/osprey_part_level.json'
image_osprey_part_dataset = dict(
    type=OspreyDataset,
    image_folder=data_osprey_image_folders,
    data_path=data_osprey_part_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=1,
    special_tokens=special_tokens,
)

data_osprey_positive_neg_file = VIDEO_DATAS + 'osprey-724k/Osprey-724K/osprey_lvis_positive_negative.json'
image_osprey_positive_neg_dataset = dict(
    type=OspreyDataset,
    image_folder=data_osprey_image_folders,
    data_path=data_osprey_positive_neg_file,
    tokenizer=tokenizer,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    lazy=True,
    repeats=1,
    special_tokens=special_tokens,
)

train_dataset = dict(
    type=ConcatDataset, datasets=[
        # sem seg
        # semantic_seg_ade20k_dataset,
        # ref seg
        refcoco_segm_dataset, refcoco_plus_segm_dataset, refcocog_segm_dataset,
        refcoco_segm_dataset, refcoco_plus_segm_dataset, refcocog_segm_dataset,
        refcoco_segm_dataset, refcoco_plus_segm_dataset, refcocog_segm_dataset,
        refcoco_segm_dataset, refcoco_plus_segm_dataset, refcocog_segm_dataset,
        # image qa
        llava_vqa_dataset,
        # video res
        video_mevis_dataset, video_revos_dataset, video_refytvos_dataset,
        # video chat
        video_qa_dataset,
        # sam2 pesudo
        video_sam2_dataset,
        # gcg data
        glamm_psg_dataset,
        glamm_grandf_dataset,
        glamm_flickr_dataset,
        glamm_refcocog_dataset,
        # visual prompt
        image_osprey_dataset, image_osprey_description_dataset,
        image_osprey_part_dataset, image_osprey_short_dataset,
        image_osprey_positive_neg_dataset,
    ]
)
train_dataloader = dict(
    batch_size=batch_size,
    num_workers=dataloader_num_workers,
    dataset=train_dataset,
    sampler=dict(
        type=LengthGroupedSampler,
        length_property='modality_length',
        per_device_batch_size=batch_size * accumulative_counts),
    collate_fn=dict(type=video_lisa_collate_fn)
)

#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(
    type=AmpOptimWrapper,
    optimizer=dict(
        type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
    clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
    accumulative_counts=accumulative_counts,
    loss_scale='dynamic',
    dtype='bfloat16'
)

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [
    dict(
        type=LinearLR,
        start_factor=1e-5,
        by_epoch=True,
        begin=0,
        end=warmup_ratio * max_epochs,
        convert_to_iter_based=True),
    dict(
        type=CosineAnnealingLR,
        eta_min=0.0,
        by_epoch=True,
        begin=warmup_ratio * max_epochs,
        end=max_epochs,
        convert_to_iter_based=True)
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
    # dict(type=DatasetInfoHook, tokenizer=tokenizer),
]

# configure default hooks
default_hooks = dict(
    # record the time of every iteration.
    timer=dict(type=IterTimerHook),
    # print log every 10 iterations.
    logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
    # enable the parameter scheduler.
    param_scheduler=dict(type=ParamSchedulerHook),
    # save checkpoint per `save_steps`.
    checkpoint=dict(
        type=CheckpointHook,
        save_optimizer=False,
        by_epoch=False,
        interval=save_steps,
        max_keep_ckpts=save_total_limit),
    # set sampler seed in distributed evrionment.
    sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
    # whether to enable cudnn benchmark
    cudnn_benchmark=False,
    # set multi process parameters
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    # set distributed parameters
    dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

# set log processor
log_processor = dict(by_epoch=False)