Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,495 Bytes
d59f323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
import json
import os
import torch
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from PIL import Image
from torch.utils.data import Dataset
from pycocotools import mask as maskUtils
import numpy as np
import copy
from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset
import torchvision.transforms as T
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from torchvision.transforms.functional import InterpolationMode
from .encode_fn import video_lisa_encode_fn
from .utils import dynamic_preprocess
import random
import torch.nn.functional as F
class OspreyDataset(Dataset):
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
LIMIT = ''
VP_START_TOKEN = '<vp>'
VP_END_TOKEN = '</vp>'
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def __init__(self,
image_folder,
data_path=None,
tokenizer=None,
max_length=8196,
special_tokens=None,
template_map_fn=None,
extra_image_processor=None,
lazy=True,
repeats=1,
single_image_mode=False,
):
super().__init__()
assert lazy
self.lazy = lazy
self.max_length = max_length
json_data = self.json_file_preprocess(data_path)
self.text_data = json_data
self.image_folder = image_folder
self.tokenizer = BUILDER.build(tokenizer)
if special_tokens is not None:
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.template_map_fn = template_map_fn
if isinstance(self.template_map_fn, dict) and self.lazy:
_type = self.template_map_fn['type']
del self.template_map_fn['type']
self.template_map_fn = _type(**self.template_map_fn)
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.repeats = repeats
self._system = ''
self.min_dynamic_patch = 1
self.max_dynamic_patch = 12
self.downsample_ratio = 0.5
self.image_size = 448
self.use_thumbnail = True
patch_size = 14
self.patch_size = patch_size
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
self.transformer = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
if special_tokens is not None:
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.single_image_mode = single_image_mode
def json_file_preprocess(self, data_path):
with open(data_path, 'r') as f:
json_data = json.load(f)
return json_data
@property
def modality_length(self):
length_list = []
for data_dict in self.text_data:
if self.lazy:
cur_len = 100
else:
cur_len = len(data_dict['input_ids'])
if data_dict.get('image', None) is None:
cur_len = -cur_len
length_list.append(cur_len)
return length_list * self.repeats
def __len__(self):
return len(self.text_data) * self.repeats
def real_len(self):
return len(self.text_data)
def annToMask(self, mask_ann, h, w):
if isinstance(mask_ann, list):
rles = maskUtils.frPyObjects(mask_ann, h, w)
rle = maskUtils.merge(rles)
elif isinstance(mask_ann['counts'], list):
# uncompressed RLE
rle = maskUtils.frPyObjects(mask_ann, h, w)
else:
# rle
rle = mask_ann
mask = maskUtils.decode(rle)
return mask
def decode_mask(self, object_masks, ori_height, ori_width):
binary_masks = []
for object_mask in object_masks:
binary_mask = self.annToMask(object_mask, ori_height, ori_width)
binary_masks.append(binary_mask)
if len(binary_masks) == 0:
return None
masks = np.stack(binary_masks, axis=0)
masks = torch.from_numpy(masks)
return masks
def _process_conversation(self, converations, n_regions, region_pixels):
start_region_str = '<image> There are {} part regions in the picture: '.format(n_regions)
for i in range(n_regions):
start_region_str = start_region_str + \
f"region{i+1}" + self.VP_START_TOKEN + self.IMG_CONTEXT_TOKEN * region_pixels[i] + self.VP_END_TOKEN
if i == n_regions - 1:
start_region_str = start_region_str + '.\n'
else:
start_region_str = start_region_str + ', '
for i, item in enumerate(converations):
item['value'] = item['value'].replace('<', '').replace('>', '')
if item['from'] == 'human':
item['value'] = item['value'] + self.LIMIT
# first conv process
if i == 0:
assert item['from'] == "human"
item['value'] = start_region_str + item['value']
messages = converations
input = ''
conversation = []
while messages and messages[0]['from'] == 'gpt':
# Skip the first one if it is from gpt
messages = messages[1:]
for msg in messages:
if msg['from'] == 'human':
if DEFAULT_IMAGE_TOKEN in msg['value']:
msg['value'] = msg['value'].replace(DEFAULT_IMAGE_TOKEN,
'').strip()
msg['value'] = DEFAULT_IMAGE_TOKEN + '\n' + msg['value']
msg['value'] = msg['value'].strip()
input += msg['value']
elif msg['from'] == 'gpt':
conversation.append({'input': input, 'output': msg['value']})
input = ''
else:
raise NotImplementedError
return conversation
def _get_region_infos(self, masks):
# masks tensor, (n_obj, h, w)
masks = F.interpolate(
masks.unsqueeze(0),
size=(int(self.image_size // self.patch_size * self.downsample_ratio),
int(self.image_size // self.patch_size * self.downsample_ratio)),
mode='nearest').squeeze(0)
region_pixels = []
for mask in masks:
region_pixels.append(mask.bool().to(torch.int64).sum())
return masks, region_pixels
def dataset_map_fn(self, data_dict):
file_name = data_dict['file_name'] # image file name
conversations = data_dict['conversations']
masks = [anno["segmentation"] for anno in data_dict["annotation"]]
height = data_dict['height']
width = data_dict['width']
_ret = {}
_ret['image'] = file_name
_ret['height'] = height
_ret['width'] = width
masks = self.decode_mask(masks, height, width)
masks, region_pixels = self._get_region_infos(masks)
if masks is None:
return None
conversations = self._process_conversation(conversations, len(masks), region_pixels)
_ret['conversation'] = conversations
_ret['prompt_masks'] = masks
return _ret
def replace_image_str(self, data_dict, image_str):
data_dict['conversation'][0]['input'] = \
data_dict['conversation'][0]['input'].replace(DEFAULT_IMAGE_TOKEN, image_str)
return data_dict
def __getitem__(self, index):
index = index % self.real_len()
data_dict = copy.deepcopy(self.text_data[index])
# parse datasets
result = self.dataset_map_fn(data_dict) # {'image', 'height', 'width', 'conversation', 'masks'}
if result is None or result['prompt_masks'] is None:
return self.__getitem__(0)
data_dict = result
# process image
image_file = data_dict['image']
if isinstance(self.image_folder, list):
for image_folder in self.image_folder:
image_path = os.path.join(image_folder, image_file)
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
break
else:
image = Image.open(os.path.join(self.image_folder,
image_file)).convert('RGB')
ori_width, ori_height = image.size
if self.single_image_mode:
images = [image]
else:
images = dynamic_preprocess(image, self.min_dynamic_patch,
self.max_dynamic_patch,
self.image_size, self.use_thumbnail)
vp_overall_mask = torch.Tensor([False] * (len(images) - 1) + [True])
data_dict['vp_overall_mask'] = vp_overall_mask
pixel_values = [self.transformer(image) for image in images]
pixel_values = torch.stack(pixel_values)
data_dict['pixel_values'] = pixel_values
num_image_tokens = pixel_values.shape[0] * self.patch_token
image_token_str = f'{self.IMG_START_TOKEN}' \
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
f'{self.IMG_END_TOKEN}'
data_dict = self.replace_image_str(data_dict, image_token_str)
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length,
with_image_token=True)
data_dict.update(result)
# process mask
# data_dict['prompt_masks'] = data_dict['prompt_masks']
if data_dict['prompt_masks'] is None:
return self.__getitem__(0)
return data_dict
DETAILED_QUESTIONS = [
'Can you provide me with a detailed description of the region in the picture marked by <region>?',
"I'm curious about the region represented by <region> in the picture. Could you describe it in detail?",
'What can you tell me about the region indicated by <region> in the image?',
"I'd like to know more about the area in the photo labeled <region>. Can you give me a detailed description?",
'Could you describe the region shown as <region> in the picture in great detail?',
'What details can you give me about the region outlined by <region> in the photo?',
'Please provide me with a comprehensive description of the region marked with <region> in the image.',
'Can you give me a detailed account of the region labeled as <region> in the picture?',
"I'm interested in learning more about the region represented by <region> in the photo. Can you describe it in detail?",
'What is the region outlined by <region> in the picture like? Could you give me a detailed description?',
'Can you provide me with a detailed description of the region in the picture marked by <region>, please?',
"I'm curious about the region represented by <region> in the picture. Could you describe it in detail, please?",
'What can you tell me about the region indicated by <region> in the image, exactly?',
"I'd like to know more about the area in the photo labeled <region>, please. Can you give me a detailed description?",
'Could you describe the region shown as <region> in the picture in great detail, please?',
'What details can you give me about the region outlined by <region> in the photo, please?',
'Please provide me with a comprehensive description of the region marked with <region> in the image, please.',
'Can you give me a detailed account of the region labeled as <region> in the picture, please?',
"I'm interested in learning more about the region represented by <region> in the photo. Can you describe it in detail, please?",
'What is the region outlined by <region> in the picture like, please? Could you give me a detailed description?',
'Please describe the region <region> in the image in detail.',
'Can you offer a thorough analysis of the region <region> in the image?',
'Could you elaborate on the region highlighted by <region> in the picture provided?',
'Please share more information about the zone emphasized with <region> in the photo.',
'What insights can you give about the area denoted by <region> in the image presented?',
'Can you share a comprehensive rundown of the region denoted by <region> in the presented image?',
"I'd like to know more about the region highlighted by <region> in the picture provided.",
'Work through the important details of the area <region> in the image.',
'Illustrate the area represented by <region> through a descriptive explanation.',
'Examine the region <region> closely and share its details.'
]
class OspreyDescriptionDataset(OspreyDataset):
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
VP_START_TOKEN = '<vp>'
VP_END_TOKEN = '</vp>'
LIMIT=''
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def __init__(self,
image_folder,
data_path=None,
tokenizer=None,
max_length=8196,
special_tokens=None,
template_map_fn=None,
extra_image_processor=None,
lazy=True,
repeats=1,
single_image_mode=False,
):
super(OspreyDescriptionDataset, self).__init__(
image_folder=image_folder,
data_path=data_path,
tokenizer=tokenizer,
max_length=max_length,
special_tokens=special_tokens,
template_map_fn=template_map_fn,
extra_image_processor=extra_image_processor,
lazy=lazy,
repeats=repeats,
single_image_mode=single_image_mode,
)
def dataset_map_fn(self, data_dict):
file_name = data_dict['file_name'] # image file name
descriptions = data_dict['description']
masks = [anno["segmentation"] for anno in data_dict["annotation"]]
height = data_dict['height']
width = data_dict['width']
_ret = {}
_ret['image'] = file_name
_ret['height'] = height
_ret['width'] = width
masks = self.decode_mask(masks, height, width)
masks, region_pixels = self._get_region_infos(masks)
if masks is None:
return None
conversations = self._process_conversation(descriptions, len(masks), region_pixels)
_ret['conversation'] = conversations
_ret['prompt_masks'] = masks
return _ret
def _process_conversation(self, descriptions, n_regions, region_pixels):
start_region_str = '<image> There are {} part regions in the picture: '.format(n_regions)
for i in range(n_regions):
start_region_str = start_region_str + \
f"region{i+1}" + self.VP_START_TOKEN + self.IMG_CONTEXT_TOKEN * region_pixels[i] + self.VP_END_TOKEN
if i == n_regions - 1:
start_region_str = start_region_str + '.\n'
else:
start_region_str = start_region_str + ', '
converations = []
for i, item in enumerate(descriptions):
question = random.choice(DETAILED_QUESTIONS).strip().replace('<region>', f"region{i+1}") + self.LIMIT
answer = item.replace('<', '').replace('>', '')
# first conv process
if i == 0:
question = start_region_str + question
converations.append({'from': 'human', 'value': question})
converations.append({'from': 'gpt', 'value': answer})
messages = converations
input = ''
conversation = []
while messages and messages[0]['from'] == 'gpt':
# Skip the first one if it is from gpt
messages = messages[1:]
for msg in messages:
if msg['from'] == 'human':
if DEFAULT_IMAGE_TOKEN in msg['value']:
msg['value'] = msg['value'].replace(DEFAULT_IMAGE_TOKEN,
'').strip()
msg['value'] = DEFAULT_IMAGE_TOKEN + '\n' + msg['value']
msg['value'] = msg['value'].strip()
input += msg['value']
elif msg['from'] == 'gpt':
conversation.append({'input': input, 'output': msg['value']})
input = ''
else:
raise NotImplementedError
return conversation
class OspreyShortDescriptionDataset(OspreyDataset):
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
VP_START_TOKEN = '<vp>'
VP_END_TOKEN = '</vp>'
LIMIT = ' Answer the question using a single word or phrase.'
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def __init__(self,
image_folder,
data_path=None,
tokenizer=None,
max_length=8196,
special_tokens=None,
template_map_fn=None,
extra_image_processor=None,
lazy=True,
repeats=1,
single_image_mode=False,
):
super(OspreyShortDescriptionDataset, self).__init__(
image_folder=image_folder,
data_path=data_path,
tokenizer=tokenizer,
max_length=max_length,
special_tokens=special_tokens,
template_map_fn=template_map_fn,
extra_image_processor=extra_image_processor,
lazy=lazy,
repeats=repeats,
single_image_mode=single_image_mode,
) |