File size: 14,427 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import copy
import random
import glob
import json
import logging
import os
import torch

from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils

from xtuner.registry import BUILDER

from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn

from projects.glamm.datasets.utils.utils import expand2square

from projects.glamm.datasets.utils.utils import GCG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class GCGDataset(Dataset):
    def __init__(self,
                 image_folder,
                 image_processor,
                 data_path=None,
                 tokenizer=None,
                 template_map_fn=None,
                 max_length=2048,
                 pad_image_to_square=False,
                 repeats=1,
                 num_classes_per_sample=3,
                 extra_image_processor=None):
        super().__init__()
        self.question_templates = GCG_QUESTIONS
        if extra_image_processor is not None:
            self.extra_image_processor = BUILDER.build(extra_image_processor)
        self.num_classes_per_sample = num_classes_per_sample
        self.tokenizer = BUILDER.build(tokenizer)

        self.tokenizer.add_tokens(
            [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
        )
        reg_tokens = ['<bbox>', '<point>']
        segmentation_tokens = ['[SEG]']
        phrase_tokens = ['<p>', '</p>']
        special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
        self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.max_length = max_length
        self.template_map_fn = BUILDER.build(template_map_fn)

        self.text_data = self.json_file_preprocess(data_path, image_folder)
        self.image_folder = image_folder

        self.image_processor = BUILDER.build(image_processor)
        size = self.image_processor.crop_size

        if isinstance(size, dict):
            self.image_w, self.image_h = size['width'], size['height']
        elif isinstance(size, int):
            self.image_h, self.image_w = size, size
        else:
            self.image_w, self.image_h = size

        self.pad_image_to_square = pad_image_to_square
        self.repeats = repeats

    def json_file_preprocess(self, data_path, image_folder=None):
        with open(data_path, 'r') as f:
            json_data = json.load(f)
        return json_data

    @property
    def modality_length(self):
        length_list = []
        for data_dict in self.text_data:
            cur_len = 100
            length_list.append(cur_len)
        return length_list * self.repeats

    def __len__(self):
        return len(self.text_data) * self.repeats

    def real_len(self):
        return len(self.text_data)

    def _parse_annotations(self, ann_info):
        image_path = os.path.join(self.image_folder, ann_info['file_name'])
        image = Image.open(image_path).convert('RGB')
        if hasattr(self, 'extra_image_processor'):
            g_image = np.array(image) # for grounding
            g_image = self.extra_image_processor.apply_image(g_image)
            g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
            ann_info['g_pixel_values'] = g_pixel_values

        width, height = image.size
        if self.pad_image_to_square:
            image = expand2square(
                image, tuple(int(x * 255) for x in self.image_processor.image_mean))
        image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
        ann_info['pixel_values'] = image

        caption = ann_info['caption'].strip('"').strip()
        masks, phrases, tokens_positive = [], [], []
        for word, grounding in ann_info["groundings"].items():
            phrases.append(word)
            tokens_positive.append(grounding["token_positives"])

            # Convert segmentation to binary mask
            binary_mask = np.zeros((height, width), dtype=np.uint8)
            for rle in grounding["rle_masks"]:
                m = mask_utils.decode(rle).astype(np.uint8)
                binary_mask += m.squeeze()
            masks.append(binary_mask)

        def sort_by_start_index(items, order):
            return [items[i] for i in order]
        
        phrase_order = sorted(range(len(tokens_positive)), key=lambda x: tokens_positive[x][0])
        masks = sort_by_start_index(masks, phrase_order)
        phrases = sort_by_start_index(phrases, phrase_order)
        tokens_positive = sort_by_start_index(tokens_positive, phrase_order)

        ann_info.update({
            'image_path': image_path,
            'caption': caption,
            'masks': masks,
            'phrases': phrases,
            'tokens_positive': tokens_positive,
        })
        return ann_info

    def create_conversation(self, caption, tokens_positive):
        question = random.choice(self.question_templates).strip()

        # Prepare caption with tags
        def tag_caption(caption, tokens):
            for start, end in sorted(tokens, key=lambda x: x[0], reverse=True):
                caption = f"{caption[:start]}<p> {caption[start:end]} </p> [SEG]{caption[end:]}"
            return caption

        detailed_answer = tag_caption(caption, tokens_positive)

        question = 'The <image> provides an overview of the picture.\n' + question
        conversation = [{'input': question, 'output': detailed_answer}]
        return conversation
    
    def __getitem__(self, index):
        index = index % self.real_len()
        data_dict = {}
        ann_info = copy.deepcopy(self.text_data[index])
        ann_info = self._parse_annotations(ann_info)
        
        data_dict['g_pixel_values'] = ann_info.pop('g_pixel_values')
        data_dict['pixel_values'] = ann_info.pop('pixel_values')
        if len(ann_info['masks']) == 0:
            return self.__getitem__(0)
        data_dict['masks'] = torch.from_numpy(np.stack(ann_info['masks'], axis=0))

        conversation = self.create_conversation(ann_info['caption'], ann_info['tokens_positive'])
        data_dict['conversation'] = conversation

        result = self.template_map_fn(data_dict)
        data_dict.update(result)

        result = encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True)
        data_dict.update(result)

        return data_dict

class GranDfGCGDataset(GCGDataset):
    pass
class RefCOCOgGCGDataset(GCGDataset):
    def json_file_preprocess(self, data_path, image_folder=None):
        with open(data_path, 'r') as f:
            json_data = json.load(f)
        return [list(line.values())[0] for line in json_data]

    def _parse_annotations(self, ann_info):
        image_path = os.path.join(self.image_folder, ann_info['img_file_name'])
        image = Image.open(image_path).convert('RGB')
        if hasattr(self, 'extra_image_processor'):
            g_image = np.array(image) # for grounding
            g_image = self.extra_image_processor.apply_image(g_image)
            g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
            ann_info['g_pixel_values'] = g_pixel_values

        width, height = image.size
        if self.pad_image_to_square:
            image = expand2square(
                image, tuple(int(x * 255) for x in self.image_processor.image_mean))
        image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
        ann_info['pixel_values'] = image

        caption = ann_info['caption'].strip('"').strip().lower()
        masks, phrases, tokens_positive = [], [], []
        for detail in ann_info['refs']:
            phrase = detail['sentence']
            if phrase.lower() in caption:
                phrases.append(phrase)
                index = caption.find(phrase)
                end_index = index + len(phrase) if index != -1 else -1
                tokens_positive.append([index, end_index])

                binary_mask = np.zeros((height, width), dtype=np.uint8)
                for seg in detail["segmentation"]:
                    rles = mask_utils.frPyObjects([seg], height, width)
                    m = mask_utils.decode(rles)
                    m = m.astype(np.uint8)
                    binary_mask += m.squeeze()
                masks.append(binary_mask)

        def sort_by_start_index(items, order):
            return [items[i] for i in order]
        
        phrase_order = sorted(range(len(tokens_positive)), key=lambda x: tokens_positive[x][0])
        masks = sort_by_start_index(masks, phrase_order)
        phrases = sort_by_start_index(phrases, phrase_order)
        tokens_positive = sort_by_start_index(tokens_positive, phrase_order)

        ann_info.update({
            'image_path': image_path,
            'caption': caption,
            'masks': masks,
            'phrases': phrases,
            'tokens_positive': tokens_positive,
        })
        return ann_info

class OpenPsgGCGDataset(GCGDataset):
    pass

class Flickr30kGCGDataset(GCGDataset):

    def json_file_preprocess(self, data_path, image_folder=None):
        def filter_images(data_infos, min_size):
            return [i for i, info in enumerate(data_infos) if min(info['width'], info['height']) >= min_size]
        
        self.coco = COCO(data_path)
        self.image_ids = self.coco.getImgIds()
        data_infos = []
        total_ann_ids = []
        removed_img_count = 0
        for img_id in self.image_ids:
            info = self.coco.loadImgs([img_id])[0]
            if len(info['caption'].split(' ')) < 3:
                removed_img_count += 1
                continue
            info['filename'] = info['file_name'].split('_')[-1]
            info['height'] = int(info['height'])
            info['width'] = int(info['width'])
            data_infos.append(info)
            ann_ids = self.coco.getAnnIds(imgIds=[img_id])
            total_ann_ids.extend(ann_ids)
        assert len(set(total_ann_ids)) == len(total_ann_ids), f"Non-unique annotation IDs in '{data_path}'!"
        print(f'Removed {removed_img_count} images.')
        data_infos = [data_infos[i] for i in filter_images(data_infos, min_size=32)]

        return data_infos
    
    def _parse_annotations(self, img_info):
        ann_ids = self.coco.getAnnIds(imgIds=img_info['id'])
        ann_info = self.coco.loadAnns(ann_ids)
        
        annotations = {'phrases': [], 'caption': img_info['caption'], 'masks': [], 'tokens_positive': []}
        image_path = os.path.join(self.image_folder, img_info['file_name'])
        image = Image.open(image_path).convert('RGB')
        if hasattr(self, 'extra_image_processor'):
            g_image = np.array(image) # for grounding
            g_image = self.extra_image_processor.apply_image(g_image)
            g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
            annotations['g_pixel_values'] = g_pixel_values

        width, height = image.size
        if self.pad_image_to_square:
            image = expand2square(
                image, tuple(int(x * 255) for x in self.image_processor.image_mean))
        image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
        annotations['pixel_values'] = image

        for ann in ann_info:
            if ann.get('ignore', False):
                continue
            x1, y1, w, h = ann['bbox']
            inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))
            inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))
            if inter_w * inter_h == 0 or ann['area'] <= 0 or w < 1 or h < 1:
                continue
            bbox = [x1, y1, x1 + w, y1 + h]
            tokens_positive = ann['tokens_positive']
            phrase = [img_info['caption'][span[0]:span[1]] for span in tokens_positive]
            annotations['phrases'].append(phrase[0])
            annotations['tokens_positive'].append(tokens_positive[0])

            rle = ann['sam_mask']
            mask_decoded = mask_utils.decode(rle).astype(np.uint8)
            annotations['masks'].append(mask_decoded)

        def sort_by_start_index(items, order):
            return [items[i] for i in order]
        
        phrase_order = sorted(range(len(annotations['tokens_positive'])), key=lambda x: annotations['tokens_positive'][x][0])
        annotations['masks'] = sort_by_start_index(annotations['masks'], phrase_order)
        annotations['phrases'] = sort_by_start_index(annotations['phrases'], phrase_order)
        annotations['tokens_positive'] = sort_by_start_index(annotations['tokens_positive'], phrase_order)

        return annotations

if __name__ == '__main__':
    from transformers import CLIPImageProcessor, AutoTokenizer
    from third_parts.segment_anything.utils.transforms import ResizeLongestSide
    pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
    llm_name_or_path = 'lmsys/vicuna-7b-v1.5'
    
    tokenizer = dict(
        type=AutoTokenizer.from_pretrained,
        pretrained_model_name_or_path=llm_name_or_path)
    image_processor = dict(
        type=CLIPImageProcessor.from_pretrained,
        pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
    extra_image_processor = dict(
        type=ResizeLongestSide,
        target_length=1024,
    )
    from xtuner.utils.templates import PROMPT_TEMPLATE
    prompt_template = PROMPT_TEMPLATE.vicuna
    from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
    from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn
    dataset = Flickr30kGCGDataset(
        image_folder='data/flickr30k/flickr30k-images/',
        image_processor=image_processor,
        data_path='./data/GranDf/annotations/train/flickr_mergedGT_GCG_train.json',
        tokenizer=tokenizer,
        template_map_fn=dict(
            type=template_map_fn_factory, template=prompt_template),
        max_length=2048,
        pad_image_to_square=True,
        repeats=1,
        num_classes_per_sample=3,
        extra_image_processor=extra_image_processor)
    
    for i in range(1000):
        print(dataset[i])