File size: 13,893 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import copy
import random
import glob
import json
import logging
import os
from typing import Literal

import torch

from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils

from xtuner.registry import BUILDER
from xtuner.utils import IGNORE_INDEX
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn

from projects.glamm.datasets.utils.utils import expand2square

from projects.glamm.datasets.utils.utils import SEG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN

from third_parts.mmdet.datasets.refcoco import RefCocoDataset

from .utils import dynamic_preprocess


class ReferSegmDataset(RefCocoDataset):
    os.environ['TOKENIZERS_PARALLELISM'] = 'true'
    IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
    IMG_START_TOKEN = '<img>'
    IMG_END_TOKEN = '</img>'

    IMAGENET_MEAN = (0.485, 0.456, 0.406)
    IMAGENET_STD = (0.229, 0.224, 0.225)

    def __init__(self,
                 data_root,
                 ann_file=None,
                 split_file=None,
                 special_tokens=None,
                 prompt_template=None,
                 extra_image_processor=None,
                 data_prefix=dict(img_path='train2014/'),
                 tokenizer=None,
                 max_length=2048,
                 num_classes_per_sample=3,
                 single_image_mode=False,
                 arch_type: Literal['intern_vl', 'qwen'] = 'intern_vl',
                 preprocessor=None,
                 **kwargs):
        super().__init__(
            data_root=data_root,
            data_prefix=data_prefix,
            pipeline=None,
            ann_file=ann_file,
            split_file=split_file,
            **kwargs,
        )
        self.begin_str = f'{DEFAULT_IMAGE_TOKEN}\n'
        if extra_image_processor is not None:
            self.extra_image_processor = BUILDER.build(extra_image_processor)

        self.arch_type = arch_type
        if self.arch_type == 'qwen':
            self.IMG_CONTEXT_TOKEN = '<|image_pad|>'
            self.IMG_START_TOKEN = '<|vision_start|>'
            self.IMG_END_TOKEN = '<|vision_end|>'
        elif self.arch_type == 'llava':
            self.IMG_CONTEXT_TOKEN = '<image>'
            self.IMG_START_TOKEN = ''
            self.IMG_END_TOKEN = ''

        self.tokenizer = BUILDER.build(tokenizer)
        if special_tokens is not None:
            self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.image_folder = data_root
        self.template = prompt_template
        self.max_length = max_length
        if self.arch_type == 'intern_vl':
            # self._system = '你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。'
            self._system = ''
            self.template['INSTRUCTION'] = '<|user|>\n{input}<|end|><|assistant|>\n'
        elif self.arch_type == 'qwen':
            self._system = ''
        elif self.arch_type == 'llava':
            self._system = ''

        self.num_classes_per_sample = num_classes_per_sample
        self.min_dynamic_patch = 1
        self.max_dynamic_patch = 12
        self.downsample_ratio = 0.5
        if self.arch_type == 'llava':
            self.downsample_ratio = 1
        self.image_size = 448
        if self.arch_type == 'llava':
            self.image_size = 336
        self.use_thumbnail = True
        patch_size = 14
        self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))

        if preprocessor is None:
            self.transformer = T.Compose([
                T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
                T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
                T.ToTensor(),
                T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
            ])
            self.preprocessor = None
        else:
            self.transformer = None
            self.preprocessor = BUILDER.build(preprocessor)
        self.arch_type = arch_type
        self.single_image_mode = single_image_mode
        self._max_refetch = 1000

        print("Image RES dataset, include {} items.".format(len(self)))

    @property
    def modality_length(self):
        import pickle
        length_list = []
        for idx in range(len(self)):
            length_list.append(100)
        return length_list

    def _parse_annotations(self, ann_info):
        image_path = ann_info['img_path']
        image = Image.open(image_path).convert('RGB')
        width, height = image.size

        masks, phrases = [], []
        instances, text = ann_info['instances'], ann_info['text']
        # index = np.random.choice(range(len(instances)), min(
        #     len(instances), self.num_classes_per_sample))
        index = np.random.choice(range(len(instances)), self.num_classes_per_sample, replace=True)
        for idx in index:
            inst = instances[idx]
            phrase = text[idx].lower()
            if '.' == phrase[-1]:
                phrase = phrase[:-1]
            phrases.append(phrase)
            binary_mask = np.zeros((height, width), dtype=np.uint8)
            for seg in inst["mask"]:
                rles = mask_utils.frPyObjects([seg], height, width)
                m = mask_utils.decode(rles)
                m = m.astype(np.uint8)
                binary_mask += m.squeeze()
            masks.append(binary_mask)

        conversation = []
        for i, phrase in enumerate(phrases):
            question = random.choice(SEG_QUESTIONS).format(class_name=phrase)
            if i == 0:
                question = self.begin_str + question
            conversation.append({'from': 'human', 'value': question})
            conversation.append({'from': 'gpt', 'value': random.choice(ANSWER_LIST)})
        masks = torch.stack([torch.from_numpy(mask) for mask in masks], dim=0)

        ann_info.update({
            'masks': masks,
            'conversations': conversation,
            'image': image_path
        })
        return ann_info

    def prepare_data(self, index):
        data_dict = super().prepare_data(index)
        data_dict = self._parse_annotations(data_dict)
        if data_dict is None:
            return None

        out_data_dict = {}
        if 'masks' in data_dict:
            out_data_dict['masks'] = data_dict['masks']

        if data_dict.get('image', None) is not None:
            image_file = data_dict['image']
            try:
                image = Image.open(image_file).convert('RGB')
            except Exception as e:
                print(f'Error: {e}', flush=True)
                print_log(f'Error: {e}', logger='current')
                return None
            if hasattr(self, 'extra_image_processor'):
                g_image = np.array(image)  # for grounding
                g_image = self.extra_image_processor.apply_image(g_image)
                g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
                out_data_dict['g_pixel_values'] = g_pixel_values

            if self.single_image_mode:
                images = [image]
            else:
                images = dynamic_preprocess(image, self.min_dynamic_patch,
                                            self.max_dynamic_patch,
                                            self.image_size, self.use_thumbnail)
            if self.preprocessor is not None:
                if self.arch_type == 'qwen':
                    _data_dict = self.preprocessor(images, do_resize=True)
                    _data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
                    _data_dict['image_grid_thw'] = torch.tensor(_data_dict['image_grid_thw'], dtype=torch.int)
                    num_image_tokens = int(_data_dict['image_grid_thw'][0].prod() * (self.downsample_ratio ** 2))
                elif self.arch_type == 'llava':
                    _data_dict = self.preprocessor(images, do_resize=True, size=(self.image_size, self.image_size))
                    _data_dict['pixel_values'] = np.stack(_data_dict['pixel_values'], axis=0)
                    _data_dict['pixel_values'] = torch.tensor(_data_dict['pixel_values'], dtype=torch.float)
                    num_image_tokens = _data_dict['pixel_values'].shape[0] * self.patch_token
                else:
                    raise NotImplementedError
                out_data_dict.update(_data_dict)
            else:
                pixel_values = [self.transformer(image) for image in images]
                pixel_values = torch.stack(pixel_values)
                out_data_dict['pixel_values'] = pixel_values

                num_image_tokens = pixel_values.shape[0] * self.patch_token
            image_token_str = f'{self.IMG_START_TOKEN}' \
                              f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                              f'{self.IMG_END_TOKEN}'
            token_dict = self.get_inputid_labels(data_dict['conversations'], image_token_str)
            out_data_dict.update(token_dict)
        else:
            token_dict = self.get_inputid_labels(data_dict['conversations'], None)
            out_data_dict.update(token_dict)
            out_data_dict['pixel_values'] = torch.zeros(1, 3, self.image_size, self.image_size)
        return out_data_dict

    def get_inputid_labels(self, conversations, image_token_str) -> dict:
        input = ''
        out_conversation = []
        while conversations and conversations[0]['from'] == 'gpt':
            # Skip the first one if it is from gpt
            conversations = conversations[1:]
        for msg in conversations:
            if msg['from'] == 'human':
                if image_token_str is None and '<image>' in msg['value']:
                    msg['value'] = msg['value'].replace('<image>', '')
                if '<image>' in msg['value']:
                    msg['value'] = msg['value'].replace('<image>', image_token_str).strip()
                input += msg['value'].strip()
            elif msg['from'] == 'gpt':
                out_conversation.append({
                    'input': input,
                    'output': msg['value'].strip()
                })
                input = ''
            else:
                raise NotImplementedError

        input_ids, labels = [], []
        for i, single_turn_conversation in enumerate(out_conversation):
            input = single_turn_conversation.get('input', '')
            if input is None:
                input = ''
            input_text = self.template.INSTRUCTION.format(
                input=input, round=i + 1)

            if i == 0:
                if self._system != '' and self._system is not None:
                    system = self.template.SYSTEM.format(system=self._system)
                    input_text = system + input_text
                input_encode = self.tokenizer.encode(
                    input_text, add_special_tokens=True)
            else:
                input_encode = self.tokenizer.encode(
                    input_text, add_special_tokens=False)
            input_ids += input_encode
            labels += [IGNORE_INDEX] * len(input_encode)

            output_text = single_turn_conversation.get('output', '')
            if self.template.get('SUFFIX', None):
                output_text += self.template.SUFFIX
            output_encode = self.tokenizer.encode(
                output_text, add_special_tokens=False)
            input_ids += output_encode
            labels += copy.deepcopy(output_encode)

        if len(input_ids) > self.max_length:
            input_ids = input_ids[:self.max_length]
            labels = labels[:self.max_length]
        # print('len_ids: ', len(input_ids))
        return {'input_ids': input_ids, 'labels': labels}

    def __getitem__(self, index):
        for _ in range(self._max_refetch + 1):
            data = self.prepare_data(index)
            # Broken images may cause the returned data to be None
            if data is None:
                index = self._rand_another()
                continue
            return data


if __name__ == '__main__':
    from transformers import CLIPImageProcessor, AutoTokenizer
    from third_parts.segment_anything.utils.transforms import ResizeLongestSide

    pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
    llm_name_or_path = 'lmsys/vicuna-7b-v1.5'

    tokenizer = dict(
        type=AutoTokenizer.from_pretrained,
        pretrained_model_name_or_path=llm_name_or_path)
    image_processor = dict(
        type=CLIPImageProcessor.from_pretrained,
        pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
    extra_image_processor = dict(
        type=ResizeLongestSide,
        target_length=1024,
    )
    from xtuner.utils.templates import PROMPT_TEMPLATE

    prompt_template = PROMPT_TEMPLATE.vicuna
    from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
    from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn

    dataset = ReferSegmDataset(
        tokenizer=tokenizer,
        special_tokens=['[SEG]'],
        extra_image_processor=extra_image_processor,
        prompt_template=prompt_template,
        data_root='data/coco/',
        data_prefix=dict(img_path='train2014/'),
        ann_file='refcoco+/instances.json',
        split_file='refcoco+/refs(unc).p',
    )
    for i in range(1000):
        dataset[i]