Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,273 Bytes
d59f323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import logging
import os
import torch
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from mmengine import print_log
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset
import copy
from .encode_fn import video_lisa_encode_fn
import json
import random
import pycocotools.mask as maskUtils
import cv2
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
SEG_QUESTIONS = [
"Please segment the object according to the description: {class_name}",
]
SEG_QUESTIONS_SHORT = [
"Can you segment the {class_name} in this image?",
"Please segment {class_name} in this image.",
"What is {class_name} in this image? Please respond with segmentation mask.",
"What is {class_name} in this image? Please output segmentation mask.",
"Can you segment the {class_name} in this image",
"Please segment {class_name} in this image",
"What is {class_name} in this image? Please respond with segmentation mask",
"What is {class_name} in this image? Please output segmentation mask",
"Could you provide a segmentation mask for the {class_name} in this image?",
"Please identify and segment the {class_name} in this image.",
"Where is the {class_name} in this picture? Please respond with a segmentation mask.",
"Can you highlight the {class_name} in this image with a segmentation mask?",
"Could you provide a segmentation mask for the {class_name} in this image",
"Please identify and segment the {class_name} in this image",
"Where is the {class_name} in this picture? Please respond with a segmentation mask",
"Can you highlight the {class_name} in this image with a segmentation mask",
]
ANSWER_LIST = [
"It is [SEG].",
"Sure, [SEG].",
"Sure, it is [SEG].",
"Sure, the segmentation result is [SEG].",
"[SEG].",
]
class VideoSAM2Dataset(Dataset):
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
FAST_IMG_CONTEXT_TOKEN = '<FAST_IMG_CONTEXT>'
FAST_IMG_START_TOKEN = '<fast_img>'
FAST_IMG_END_TOKEN = '</fast_img>'
def __init__(self,
sam2_folder,
expression_file,
extra_image_processor=None,
tokenizer=None,
select_number=5,
sampled_frames=5,
offline_processed_text_folder=None,
template_map_fn=None,
max_length=8196,
lazy=True,
repeats=1,
special_tokens=None,
use_fast=False,
n_fast_images=50,
fast_pool_size=4,
mode='long',
frame_contiguous_sample=False,
):
assert mode in ['long', 'long_short', 'short']
self.mode = mode
self.cur_mode = mode
assert lazy is True
self.tokenizer = BUILDER.build(tokenizer)
self.select_number = select_number
self.sampled_frames = sampled_frames
assert offline_processed_text_folder or (expression_file and tokenizer)
self.lazy = lazy
self.max_length = max_length
self.template_map_fn = template_map_fn
if isinstance(self.template_map_fn, dict) and self.lazy:
_type = self.template_map_fn['type']
del self.template_map_fn['type']
self.template_map_fn = _type(**self.template_map_fn)
if offline_processed_text_folder and expression_file:
print_log(
'Both `offline_processed_text_folder` and '
'`data_path` are set, and we load dataset from'
'`offline_processed_text_folder` '
f'({offline_processed_text_folder})',
logger='current',
level=logging.WARNING)
if offline_processed_text_folder is not None:
raise NotImplementedError
else:
video_ids, anno_dict = self.json_file_preprocess(expression_file)
if self.lazy:
self.video_ids = video_ids
self.anno_dict = anno_dict
else:
raise NotImplementedError
self.sam2_folder = sam2_folder
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.down_ratio = 1
self.repeats = repeats
self._system = ''
self.downsample_ratio = 0.5
self.image_size = 448
patch_size = 14
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
self.transformer = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
if special_tokens is not None:
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.use_fast = use_fast
self.n_fast_images = n_fast_images
self.fast_pool_size = fast_pool_size
self.frame_contiguous_sample = frame_contiguous_sample
# for visualization debug
self.save_folder = './work_dirs/video_debug/'
self.cur_number = 0
print("Video res dataset (ref-sam2), include {} items.".format(len(self.video_ids)))
def __len__(self):
return len(self.video_ids) * self.repeats
@property
def modality_length(self):
length_list = []
for data_dict in self.video_ids:
cur_len = 20000
length_list.append(cur_len)
return length_list
def real_len(self):
return len(self.video_ids)
def json_file_preprocess(self, expression_file):
# prepare expression annotation files
with open(expression_file, 'r') as f:
expression_datas = json.load(f)
video_ids = list(expression_datas.keys())
return video_ids, expression_datas
def dataset_map_fn(self, objects_expression_infos, n_frames, n_fast_frames=0):
# prepare text
if self.mode == 'long':
expressions = [object_info['formated'] for object_info in objects_expression_infos]
self.cur_mode = self.mode
elif self.mode == 'short':
expressions = [object_info['short_caps'][random.randint(0, len(object_info['short_caps'])-1)] for object_info in objects_expression_infos]
self.cur_mode = self.mode
else:
if random.random() < 0.5:
expressions = [object_info['formated'] for object_info in objects_expression_infos]
self.cur_mode = 'long'
else:
expressions = [object_info['short_caps'][random.randint(0, len(object_info['short_caps']) - 1)] for
object_info in objects_expression_infos]
self.cur_mode = 'short'
text_dict = self.prepare_text(n_frames, expressions, num_image_tokens=self.patch_token,
n_fast_frames=n_fast_frames)
ret = {'conversation': text_dict['conversation']}
return ret
def prepare_text(self, n_frames, expressions, num_image_tokens=256, n_fast_frames=0):
if self.use_fast:
fast_frame_token_str = f'{self.FAST_IMG_START_TOKEN}' \
f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_frames * self.fast_pool_size * self.fast_pool_size}' \
f'{self.FAST_IMG_END_TOKEN}' + '\n'
else:
fast_frame_token_str = ''
frame_token_str = f'{self.IMG_START_TOKEN}' \
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
f'{self.IMG_END_TOKEN}'
questions = []
answers = []
for i, exp in enumerate(expressions):
if self.cur_mode == 'short':
question_template = random.choice(SEG_QUESTIONS_SHORT)
exp = exp.replace("A ", '')
else:
question_template = random.choice(SEG_QUESTIONS)
questions.append(question_template.format(class_name=exp))
answers.append(random.choice(ANSWER_LIST))
qa_list = []
for i, (question, answer) in enumerate(zip(questions, answers)):
if i == 0:
frame_tokens = frame_token_str + '\n'
# frame_tokens = '=' + ' '
frame_tokens = frame_tokens * n_frames
frame_tokens = frame_tokens.strip()
frame_tokens = fast_frame_token_str + frame_tokens
qa_list.append(
{'from': 'human', 'value': frame_tokens + question}
)
else:
qa_list.append(
{'from': 'human', 'value': question}
)
qa_list.append(
{'from': 'gpt', 'value': answer}
)
input = ''
conversation = []
for msg in qa_list:
if msg['from'] == 'human':
input += msg['value']
elif msg['from'] == 'gpt':
conversation.append({'input': input, 'output': msg['value']})
input = ''
else:
raise NotImplementedError
# add system information
conversation[0].update({'system': self._system})
return {'conversation': conversation}
def __getitem__(self, index):
index = index % self.real_len()
video_id = self.video_ids[index]
expression_dict = self.anno_dict[video_id]
object_ids = list(expression_dict['objects'].keys())
video_path = os.path.join(self.sam2_folder, expression_dict['video_path'])
anno_path = os.path.join(self.sam2_folder, expression_dict['anno_path'])
video_frames = get_video_frames(video_path)
if self.use_fast:
# sample fast branch
fast_interval = len(video_frames) / (self.n_fast_images + 1e-4)
sampled_fast_frame_idxs = [min(int(i * fast_interval), len(video_frames) - 1) for i in range(self.n_fast_images)]
fast_video_frames = [video_frames[_idx] for _idx in sampled_fast_frame_idxs]
else:
fast_video_frames = None
video_frames = video_frames[::4]
# mask annotation
with open(anno_path, 'r') as f:
mask_data = json.load(f)
masklents = decode_masklet(mask_data['masklet'])
n_frames = len(masklents)
n_objects = len(object_ids)
# sample object
if n_objects > self.select_number:
selected_indexes = np.random.choice(n_objects, self.select_number)
else:
selected_indexes = np.random.choice(n_objects, self.select_number, replace=True)
selected_object_ids = [object_ids[_idx] for _idx in selected_indexes]
objects_expression_infos = [expression_dict['objects'][_idx] for _idx in selected_object_ids]
_masklents = []
for _mask in masklents:
_mask_selected = []
for _idx in selected_object_ids:
_mask_selected.append(_mask[:, :, int(_idx)])
_mask_selected = np.stack(_mask_selected, axis=2)
_masklents.append(_mask_selected)
masklents = _masklents
# sample video frames
# prepare images, random select k frames
if n_frames > self.sampled_frames + 1:
if self.frame_contiguous_sample and random.random() < 0.5:
# do contiguous sample
selected_start_frame = np.random.choice(n_frames - self.sampled_frames, 1, replace=False)
selected_frame_indexes = [selected_start_frame[0] + _i for _i in range(self.sampled_frames)]
else:
selected_frame_indexes = np.random.choice(n_frames, self.sampled_frames, replace=False)
else:
selected_frame_indexes = np.random.choice(n_frames, self.sampled_frames, replace=True)
selected_frame_indexes.sort()
video_frames = [video_frames[_idx] for _idx in selected_frame_indexes]
masklents = [masklents[_idx] for _idx in selected_frame_indexes]
data_dict = self.dataset_map_fn(objects_expression_infos, len(video_frames), n_fast_frames=self.n_fast_images)
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True)
data_dict.update(result)
pixel_values = []
extra_pixel_values = []
for frame in video_frames:
frame = frame[:, :, ::-1]
frame_image = Image.fromarray(frame).convert('RGB')
ori_width, ori_height = frame_image.size
if self.extra_image_processor is not None:
g_image = np.array(frame_image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
extra_pixel_values.append(g_pixel_values)
frame_image = self.transformer(frame_image)
pixel_values.append(frame_image)
pixel_values = torch.stack(pixel_values, dim=0) # (n_f, 3, h, w)
data_dict['pixel_values'] = pixel_values
if self.extra_image_processor is not None:
data_dict['g_pixel_values'] = extra_pixel_values
# for fast branch
if self.use_fast:
fast_pixel_values = []
for frame_image in fast_video_frames:
frame = frame_image[:, :, ::-1]
frame_image = Image.fromarray(frame).convert('RGB')
ori_width, ori_height = frame_image.size
frame_image = self.transformer(frame_image)
fast_pixel_values.append(frame_image)
fast_pixel_values = torch.stack(fast_pixel_values, dim=0) # (n_f, 3, h, w)
data_dict['fast_pixel_values'] = fast_pixel_values
# process and get masks
masklents = np.stack(masklents, axis=0) # (n_frames, h, w, n_obj)
masklents = torch.from_numpy(masklents).permute(3, 0, 1, 2)
masklents = masklents.flatten(0, 1)
# print('sam2-mask_shape:', masklents.shape)
# print('sam2-pixel_values:', data_dict['pixel_values'].shape)
# print('sam2-g_pixel_values:', len(data_dict['g_pixel_values']), ', ', data_dict['g_pixel_values'][0].shape)
data_dict['masks'] = masklents
data_dict['type'] = 'video'
return data_dict
def visualization_debug(self, data_dict):
save_folder = os.path.join(self.save_folder, 'sample_{}'.format(self.cur_number))
if not os.path.exists(save_folder):
os.mkdir(save_folder)
self.cur_number += 1
# images
show_images = []
pixel_values = data_dict['pixel_values']
save_folder_image = os.path.join(save_folder, 'image')
if not os.path.exists(save_folder_image):
os.mkdir(save_folder_image)
for i_image, image_pixel_value in enumerate(pixel_values):
# print(image_pixel_value.shape)
image_pixel_value[0] = image_pixel_value[0] * 0.2686
image_pixel_value[1] = image_pixel_value[1] * 0.2613
image_pixel_value[2] = image_pixel_value[2] * 0.2757
image_pixel_value[0] = image_pixel_value[0] + 0.4814
image_pixel_value[1] = image_pixel_value[1] + 0.4578
image_pixel_value[2] = image_pixel_value[2] + 0.4082
image_pixel_value = image_pixel_value * 255
image_pixel_value = image_pixel_value.permute(1, 2, 0)
image_pixel_value = image_pixel_value.to(torch.uint8).numpy()
# print(os.path.join(save_folder_image, '{}.jpg'.format(i_image)))
# print(image_pixel_value.shape)
show_images.append(image_pixel_value)
cv2.imwrite(os.path.join(save_folder_image, '{}.jpg'.format(i_image)), image_pixel_value)
# text
input_text = self.tokenizer.decode(data_dict['input_ids'], skip_special_tokens=False)
with open(os.path.join(save_folder, 'text.json'), 'w') as f:
json.dump([input_text], f)
# masks
save_folder_mask = os.path.join(save_folder, 'mask')
if not os.path.exists(save_folder_mask):
os.mkdir(save_folder_mask)
n_frames = len(pixel_values)
masks = data_dict['masks']
_, h, w = masks.shape
masks = masks.reshape(-1, n_frames, h, w)
for i_obj, obj_masks in enumerate(masks):
save_folder_mask_obj_folder = os.path.join(save_folder_mask, 'obj_{}'.format(i_obj))
if not os.path.exists(save_folder_mask_obj_folder):
os.mkdir(save_folder_mask_obj_folder)
for i_frame, f_mask in enumerate(obj_masks):
f_mask = f_mask.numpy()
f_mask = f_mask * 255
f_mask = np.stack([f_mask * 1, f_mask * 0, f_mask * 0], axis=2)
f_mask = show_images[i_frame] * 0.3 + 0.7 * f_mask
f_mask = f_mask.astype(np.uint8)
cv2.imwrite(os.path.join(save_folder_mask_obj_folder, '{}.png'.format(i_frame)), f_mask)
return
def get_video_frames(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Cannot open video file.")
return
frames = []
frame_id = 0
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
frame_id += 1
cap.release()
return frames
def images_to_video(frames, video_name, fps=6):
height, width, layers = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(video_name, fourcc, fps, (width, height))
for frame in frames:
video.write(frame)
# cv2.destroyAllWindows()
video.release()
return
def decode_masklet(masklet):
masks = []
for _rle in masklet:
mask = maskUtils.decode(_rle)
masks.append(mask)
return masks
def draw_mask(image, mask):
obj_mask = mask * 255
obj_mask = np.stack([obj_mask * 1, obj_mask * 0, obj_mask * 0], axis=2)
obj_mask = obj_mask * 0.5 + copy.deepcopy(image) * 0.5
obj_mask = obj_mask.astype(np.uint8)
return obj_mask
def add_mask2images(frames, masklets):
show_videos = []
for i_frames, (frame, masks) in enumerate(zip(frames, masklets)):
if i_frames == 0:
n_obj = masks.shape[-1]
for i_obj in range(n_obj):
show_videos.append([])
n_obj = masks.shape[-1]
for i_obj in range(n_obj):
show_videos[i_obj].append(draw_mask(copy.deepcopy(frame), masks[:, :, i_obj]))
return show_videos |