File size: 19,273 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import logging
import os
import torch
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from mmengine import print_log
from PIL import Image
from torch.utils.data import Dataset
import numpy as np

from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset
import copy
from .encode_fn import video_lisa_encode_fn
import json
import random
import pycocotools.mask as maskUtils
import cv2
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

SEG_QUESTIONS = [
    "Please segment the object according to the description: {class_name}",
]

SEG_QUESTIONS_SHORT = [
    "Can you segment the {class_name} in this image?",
    "Please segment {class_name} in this image.",
    "What is {class_name} in this image? Please respond with segmentation mask.",
    "What is {class_name} in this image? Please output segmentation mask.",

    "Can you segment the {class_name} in this image",
    "Please segment {class_name} in this image",
    "What is {class_name} in this image? Please respond with segmentation mask",
    "What is {class_name} in this image? Please output segmentation mask",

    "Could you provide a segmentation mask for the {class_name} in this image?",
    "Please identify and segment the {class_name} in this image.",
    "Where is the {class_name} in this picture? Please respond with a segmentation mask.",
    "Can you highlight the {class_name} in this image with a segmentation mask?",

    "Could you provide a segmentation mask for the {class_name} in this image",
    "Please identify and segment the {class_name} in this image",
    "Where is the {class_name} in this picture? Please respond with a segmentation mask",
    "Can you highlight the {class_name} in this image with a segmentation mask",
]

ANSWER_LIST = [
    "It is [SEG].",
    "Sure, [SEG].",
    "Sure, it is [SEG].",
    "Sure, the segmentation result is [SEG].",
    "[SEG].",
]

class VideoSAM2Dataset(Dataset):
    IMAGENET_MEAN = (0.485, 0.456, 0.406)
    IMAGENET_STD = (0.229, 0.224, 0.225)
    IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
    IMG_START_TOKEN = '<img>'
    IMG_END_TOKEN = '</img>'

    FAST_IMG_CONTEXT_TOKEN = '<FAST_IMG_CONTEXT>'
    FAST_IMG_START_TOKEN = '<fast_img>'
    FAST_IMG_END_TOKEN = '</fast_img>'

    def __init__(self,
                 sam2_folder,
                 expression_file,
                 extra_image_processor=None,
                 tokenizer=None,
                 select_number=5,
                 sampled_frames=5,
                 offline_processed_text_folder=None,
                 template_map_fn=None,
                 max_length=8196,
                 lazy=True,
                 repeats=1,
                 special_tokens=None,
                 use_fast=False,
                 n_fast_images=50,
                 fast_pool_size=4,
                 mode='long',
                 frame_contiguous_sample=False,
    ):
        assert mode in ['long', 'long_short', 'short']
        self.mode = mode
        self.cur_mode = mode
        assert lazy is True
        self.tokenizer = BUILDER.build(tokenizer)
        self.select_number = select_number
        self.sampled_frames = sampled_frames
        assert offline_processed_text_folder or (expression_file and tokenizer)
        self.lazy = lazy

        self.max_length = max_length

        self.template_map_fn = template_map_fn
        if isinstance(self.template_map_fn, dict) and self.lazy:
            _type = self.template_map_fn['type']
            del self.template_map_fn['type']
            self.template_map_fn = _type(**self.template_map_fn)

        if offline_processed_text_folder and expression_file:
            print_log(
                'Both `offline_processed_text_folder` and '
                '`data_path` are set, and we load dataset from'
                '`offline_processed_text_folder` '
                f'({offline_processed_text_folder})',
                logger='current',
                level=logging.WARNING)

        if offline_processed_text_folder is not None:
            raise NotImplementedError
        else:
            video_ids, anno_dict = self.json_file_preprocess(expression_file)
            if self.lazy:
                self.video_ids = video_ids
                self.anno_dict = anno_dict
            else:
                raise NotImplementedError

        self.sam2_folder = sam2_folder
        if extra_image_processor is not None:
            self.extra_image_processor = BUILDER.build(extra_image_processor)
        self.down_ratio = 1
        self.repeats = repeats

        self._system = ''

        self.downsample_ratio = 0.5
        self.image_size = 448
        patch_size = 14
        self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))

        self.transformer = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
        ])

        if special_tokens is not None:
            self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.use_fast = use_fast
        self.n_fast_images = n_fast_images
        self.fast_pool_size = fast_pool_size

        self.frame_contiguous_sample = frame_contiguous_sample

        # for visualization debug
        self.save_folder = './work_dirs/video_debug/'
        self.cur_number = 0

        print("Video res dataset (ref-sam2), include {} items.".format(len(self.video_ids)))

    def __len__(self):
        return len(self.video_ids) * self.repeats

    @property
    def modality_length(self):
        length_list = []
        for data_dict in self.video_ids:
            cur_len = 20000
            length_list.append(cur_len)
        return length_list

    def real_len(self):
        return len(self.video_ids)

    def json_file_preprocess(self, expression_file):
        # prepare expression annotation files
        with open(expression_file, 'r') as f:
            expression_datas = json.load(f)

        video_ids = list(expression_datas.keys())
        return video_ids, expression_datas

    def dataset_map_fn(self, objects_expression_infos, n_frames, n_fast_frames=0):
        # prepare text
        if self.mode == 'long':
            expressions = [object_info['formated'] for object_info in objects_expression_infos]
            self.cur_mode = self.mode
        elif self.mode == 'short':
            expressions = [object_info['short_caps'][random.randint(0, len(object_info['short_caps'])-1)] for object_info in objects_expression_infos]
            self.cur_mode = self.mode
        else:
            if random.random() < 0.5:
                expressions = [object_info['formated'] for object_info in objects_expression_infos]
                self.cur_mode = 'long'
            else:
                expressions = [object_info['short_caps'][random.randint(0, len(object_info['short_caps']) - 1)] for
                               object_info in objects_expression_infos]
                self.cur_mode = 'short'
        text_dict = self.prepare_text(n_frames, expressions, num_image_tokens=self.patch_token,
                                      n_fast_frames=n_fast_frames)
        ret = {'conversation': text_dict['conversation']}
        return ret

    def prepare_text(self, n_frames, expressions, num_image_tokens=256, n_fast_frames=0):

        if self.use_fast:
            fast_frame_token_str = f'{self.FAST_IMG_START_TOKEN}' \
                          f'{self.FAST_IMG_CONTEXT_TOKEN * n_fast_frames * self.fast_pool_size * self.fast_pool_size}' \
                          f'{self.FAST_IMG_END_TOKEN}' + '\n'
        else:
            fast_frame_token_str = ''

        frame_token_str = f'{self.IMG_START_TOKEN}' \
                          f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                          f'{self.IMG_END_TOKEN}'

        questions = []
        answers = []
        for i, exp in enumerate(expressions):
            if self.cur_mode == 'short':
                question_template = random.choice(SEG_QUESTIONS_SHORT)
                exp = exp.replace("A ", '')
            else:
                question_template = random.choice(SEG_QUESTIONS)
            questions.append(question_template.format(class_name=exp))
            answers.append(random.choice(ANSWER_LIST))
        qa_list = []
        for i, (question, answer) in enumerate(zip(questions, answers)):
            if i == 0:
                frame_tokens = frame_token_str + '\n'
                # frame_tokens = '=' + ' '
                frame_tokens = frame_tokens * n_frames
                frame_tokens = frame_tokens.strip()
                frame_tokens = fast_frame_token_str + frame_tokens
                qa_list.append(
                    {'from': 'human', 'value': frame_tokens + question}
                )
            else:
                qa_list.append(
                    {'from': 'human', 'value': question}
                )
            qa_list.append(
                {'from': 'gpt', 'value': answer}
            )

        input = ''
        conversation = []
        for msg in qa_list:
            if msg['from'] == 'human':
                input += msg['value']
            elif msg['from'] == 'gpt':
                conversation.append({'input': input, 'output': msg['value']})
                input = ''
            else:
                raise NotImplementedError

        # add system information
        conversation[0].update({'system': self._system})
        return {'conversation': conversation}

    def __getitem__(self, index):
        index = index % self.real_len()
        video_id = self.video_ids[index]
        expression_dict = self.anno_dict[video_id]
        object_ids = list(expression_dict['objects'].keys())

        video_path = os.path.join(self.sam2_folder, expression_dict['video_path'])
        anno_path = os.path.join(self.sam2_folder, expression_dict['anno_path'])

        video_frames = get_video_frames(video_path)

        if self.use_fast:
            # sample fast branch
            fast_interval = len(video_frames) / (self.n_fast_images + 1e-4)
            sampled_fast_frame_idxs = [min(int(i * fast_interval), len(video_frames) - 1) for i in range(self.n_fast_images)]
            fast_video_frames = [video_frames[_idx] for _idx in sampled_fast_frame_idxs]
        else:
            fast_video_frames = None

        video_frames = video_frames[::4]

        # mask annotation
        with open(anno_path, 'r') as f:
            mask_data = json.load(f)
        masklents = decode_masklet(mask_data['masklet'])

        n_frames = len(masklents)
        n_objects = len(object_ids)

        # sample object
        if n_objects > self.select_number:
            selected_indexes = np.random.choice(n_objects, self.select_number)
        else:
            selected_indexes = np.random.choice(n_objects, self.select_number, replace=True)

        selected_object_ids = [object_ids[_idx] for _idx in selected_indexes]
        objects_expression_infos = [expression_dict['objects'][_idx] for _idx in selected_object_ids]
        _masklents = []
        for _mask in masklents:
            _mask_selected = []
            for _idx in selected_object_ids:
                _mask_selected.append(_mask[:, :, int(_idx)])
            _mask_selected = np.stack(_mask_selected, axis=2)
            _masklents.append(_mask_selected)
        masklents = _masklents

        # sample video frames
        # prepare images, random select k frames
        if n_frames > self.sampled_frames + 1:
            if self.frame_contiguous_sample and random.random() < 0.5:
                # do contiguous sample
                selected_start_frame = np.random.choice(n_frames - self.sampled_frames, 1, replace=False)
                selected_frame_indexes = [selected_start_frame[0] + _i for _i in range(self.sampled_frames)]
            else:
                selected_frame_indexes = np.random.choice(n_frames, self.sampled_frames, replace=False)
        else:
            selected_frame_indexes = np.random.choice(n_frames, self.sampled_frames, replace=True)
        selected_frame_indexes.sort()

        video_frames = [video_frames[_idx] for _idx in selected_frame_indexes]
        masklents = [masklents[_idx] for _idx in selected_frame_indexes]

        data_dict = self.dataset_map_fn(objects_expression_infos, len(video_frames), n_fast_frames=self.n_fast_images)
        result = self.template_map_fn(data_dict)
        data_dict.update(result)
        result = video_lisa_encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True)
        data_dict.update(result)

        pixel_values = []
        extra_pixel_values = []
        for frame in video_frames:
            frame = frame[:, :, ::-1]
            frame_image = Image.fromarray(frame).convert('RGB')
            ori_width, ori_height = frame_image.size
            if self.extra_image_processor is not None:
                g_image = np.array(frame_image)  # for grounding
                g_image = self.extra_image_processor.apply_image(g_image)
                g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
                extra_pixel_values.append(g_pixel_values)

            frame_image = self.transformer(frame_image)
            pixel_values.append(frame_image)

        pixel_values = torch.stack(pixel_values, dim=0)  # (n_f, 3, h, w)
        data_dict['pixel_values'] = pixel_values
        if self.extra_image_processor is not None:
            data_dict['g_pixel_values'] = extra_pixel_values

        # for fast branch
        if self.use_fast:
            fast_pixel_values = []
            for frame_image in fast_video_frames:
                frame = frame_image[:, :, ::-1]
                frame_image = Image.fromarray(frame).convert('RGB')
                ori_width, ori_height = frame_image.size

                frame_image = self.transformer(frame_image)
                fast_pixel_values.append(frame_image)

            fast_pixel_values = torch.stack(fast_pixel_values, dim=0)  # (n_f, 3, h, w)
            data_dict['fast_pixel_values'] = fast_pixel_values

        # process and get masks
        masklents = np.stack(masklents, axis=0)  # (n_frames, h, w, n_obj)
        masklents = torch.from_numpy(masklents).permute(3, 0, 1, 2)
        masklents = masklents.flatten(0, 1)
        # print('sam2-mask_shape:', masklents.shape)
        # print('sam2-pixel_values:', data_dict['pixel_values'].shape)
        # print('sam2-g_pixel_values:', len(data_dict['g_pixel_values']), ', ', data_dict['g_pixel_values'][0].shape)
        data_dict['masks'] = masklents
        data_dict['type'] = 'video'
        return data_dict

    def visualization_debug(self, data_dict):
        save_folder = os.path.join(self.save_folder, 'sample_{}'.format(self.cur_number))
        if not os.path.exists(save_folder):
            os.mkdir(save_folder)
        self.cur_number += 1

        # images

        show_images = []

        pixel_values = data_dict['pixel_values']
        save_folder_image = os.path.join(save_folder, 'image')
        if not os.path.exists(save_folder_image):
            os.mkdir(save_folder_image)
        for i_image, image_pixel_value in enumerate(pixel_values):
            # print(image_pixel_value.shape)
            image_pixel_value[0] = image_pixel_value[0] * 0.2686
            image_pixel_value[1] = image_pixel_value[1] * 0.2613
            image_pixel_value[2] = image_pixel_value[2] * 0.2757
            image_pixel_value[0] = image_pixel_value[0] + 0.4814
            image_pixel_value[1] = image_pixel_value[1] + 0.4578
            image_pixel_value[2] = image_pixel_value[2] + 0.4082
            image_pixel_value = image_pixel_value * 255
            image_pixel_value = image_pixel_value.permute(1, 2, 0)
            image_pixel_value = image_pixel_value.to(torch.uint8).numpy()
            # print(os.path.join(save_folder_image, '{}.jpg'.format(i_image)))
            # print(image_pixel_value.shape)
            show_images.append(image_pixel_value)
            cv2.imwrite(os.path.join(save_folder_image, '{}.jpg'.format(i_image)), image_pixel_value)

        # text
        input_text = self.tokenizer.decode(data_dict['input_ids'], skip_special_tokens=False)
        with open(os.path.join(save_folder, 'text.json'), 'w') as f:
            json.dump([input_text], f)

        # masks
        save_folder_mask = os.path.join(save_folder, 'mask')
        if not os.path.exists(save_folder_mask):
            os.mkdir(save_folder_mask)
        n_frames = len(pixel_values)
        masks = data_dict['masks']
        _, h, w = masks.shape
        masks = masks.reshape(-1, n_frames, h, w)
        for i_obj, obj_masks in enumerate(masks):
            save_folder_mask_obj_folder = os.path.join(save_folder_mask, 'obj_{}'.format(i_obj))
            if not os.path.exists(save_folder_mask_obj_folder):
                os.mkdir(save_folder_mask_obj_folder)
            for i_frame, f_mask in enumerate(obj_masks):
                f_mask = f_mask.numpy()
                f_mask = f_mask * 255
                f_mask = np.stack([f_mask * 1, f_mask * 0, f_mask * 0], axis=2)
                f_mask = show_images[i_frame] * 0.3 + 0.7 * f_mask
                f_mask = f_mask.astype(np.uint8)
                cv2.imwrite(os.path.join(save_folder_mask_obj_folder, '{}.png'.format(i_frame)), f_mask)
        return

def get_video_frames(video_path):
    cap = cv2.VideoCapture(video_path)

    if not cap.isOpened():
        print("Error: Cannot open video file.")
        return

    frames = []

    frame_id = 0
    while True:
        ret, frame = cap.read()

        if not ret:
            break

        frames.append(frame)

        frame_id += 1

    cap.release()
    return frames


def images_to_video(frames, video_name, fps=6):
    height, width, layers = frames[0].shape

    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    video = cv2.VideoWriter(video_name, fourcc, fps, (width, height))

    for frame in frames:
        video.write(frame)

    # cv2.destroyAllWindows()
    video.release()
    return

def decode_masklet(masklet):
    masks = []
    for _rle in masklet:
        mask = maskUtils.decode(_rle)
        masks.append(mask)
    return masks

def draw_mask(image, mask):
    obj_mask = mask * 255
    obj_mask = np.stack([obj_mask * 1, obj_mask * 0, obj_mask * 0], axis=2)
    obj_mask = obj_mask * 0.5 + copy.deepcopy(image) * 0.5
    obj_mask = obj_mask.astype(np.uint8)
    return obj_mask

def add_mask2images(frames, masklets):
    show_videos = []
    for i_frames, (frame, masks) in enumerate(zip(frames, masklets)):
        if i_frames == 0:
            n_obj = masks.shape[-1]
            for i_obj in range(n_obj):
                show_videos.append([])

        n_obj = masks.shape[-1]
        for i_obj in range(n_obj):
            show_videos[i_obj].append(draw_mask(copy.deepcopy(frame), masks[:, :, i_obj]))
    return show_videos