File size: 8,921 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) OpenMMLab. All rights reserved.
import os.path

import cv2
import mmengine
from mmengine.runner import ValLoop as MMENGINE_ValLoop
from mmengine.dist import broadcast_object_list, is_main_process, get_world_size, get_rank, barrier, collect_results
import math
import torch
from mmengine.model import is_model_wrapper
from types import MethodType
from xtuner.utils import PROMPT_TEMPLATE
from xtuner.tools.utils import get_stop_criteria
from transformers import GenerationConfig
from pycocotools import mask as _mask
from mmengine.visualization.visualizer import Visualizer

from vlm.utils import VideoReader

TORCH_DTYPE_MAP = dict(fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')

VID_INTERVAL = 4

def visualize(data_batch, prediction, visualize_path='work_dirs/visualize'):
    if 'video_path' in data_batch:
        vid_frames = VideoReader(data_batch['video_path'])[::VID_INTERVAL]
        vid_id = os.path.basename(data_batch['video_path']).split('.')[0]
        text_prompts = data_batch['text_prompts']
        mmengine.mkdir_or_exist(os.path.join(visualize_path, vid_id))
        visualizer = Visualizer()

        mmengine.mkdir_or_exist(os.path.join(visualize_path, vid_id, "vid"))
        for id_frame, img in enumerate(vid_frames):
            out_path = os.path.join(visualize_path, vid_id, "vid", "{:06d}.jpg".format(id_frame))
            cv2.imwrite(out_path, img)

        for id_text, text in enumerate(text_prompts):
            mmengine.mkdir_or_exist(os.path.join(visualize_path, vid_id, "sample_{:06d}".format(id_text)))
            mmengine.put_text(text, os.path.join(visualize_path, vid_id, "sample_{:06d}".format(id_text), 'text.txt'))
            for id_frame, img in enumerate(vid_frames):
                visualizer.set_image(img)
                mask = prediction['prediction_masks'][id_text][id_frame]
                mask = _mask.decode(mask).astype(bool)
                visualizer.draw_binary_masks(mask, colors='g')
                visual_result = visualizer.get_image()
                out_path = os.path.join(visualize_path, vid_id, "sample_{:06d}".format(id_text),
                                        "{:06d}.jpg".format(id_frame))
                cv2.imwrite(out_path, visual_result)
    else:
        images_files = data_batch['images']
        vid_id = data_batch['video_id']
        text_prompts = data_batch['text_prompts']
        image_folder = data_batch['image_folder']
        mmengine.mkdir_or_exist(os.path.join(visualize_path, "{:06d}".format(vid_id)))
        visualizer = Visualizer()

        mmengine.mkdir_or_exist(os.path.join(visualize_path, "{:06d}".format(vid_id), "vid"))
        for id_frame, img_file in enumerate(images_files):
            img = cv2.imread(os.path.join(image_folder, img_file))
            out_path = os.path.join(visualize_path, "{:06d}".format(vid_id), "vid", os.path.basename(img_file))
            cv2.imwrite(out_path, img)

        for id_text, text in enumerate(text_prompts):
            mmengine.mkdir_or_exist(os.path.join(visualize_path, "{:06d}".format(vid_id), "sample_{:06d}".format(id_text)))
            mmengine.put_text(text, os.path.join(visualize_path, "{:06d}".format(vid_id), "sample_{:06d}".format(id_text),
                                                 'text.txt'))
            for id_frame, img_file in enumerate(images_files):
                img = cv2.imread(os.path.join(image_folder, img_file))
                visualizer.set_image(img)
                mask = prediction['prediction_masks'][id_text][id_frame]
                mask = _mask.decode(mask).astype(bool)
                visualizer.draw_binary_masks(mask, colors='g')
                visual_result = visualizer.get_image()

                out_path = os.path.join(visualize_path, "{:06d}".format(vid_id), "sample_{:06d}".format(id_text),
                                        os.path.basename(img_file))
                cv2.imwrite(out_path, visual_result)



class VideoTestLoop(MMENGINE_ValLoop):
    def __init__(self, runner, dataloader, torch_dtype='fp16', select_metric='first', visualize=None, evaluator=None) -> None:
        # must be concatset
        super(MMENGINE_ValLoop, self).__init__(runner, dataloader)
        self._runner = runner
        self.torch_dtype = torch_dtype
        if torch_dtype is not None:
            self.torch_dtype = TORCH_DTYPE_MAP[torch_dtype]
        self.select_metric = select_metric

        self.visualize = visualize
        self.evaluator = evaluator

    def run(self) -> dict:
        """Launch Test."""
        self.runner.logger.info('==================== Start test loop ===================')
        self.runner.call_hook('before_test')
        self.runner.call_hook('before_test_epoch')

        if is_model_wrapper(self.runner.model):
            model = self.runner.model.module
        else:
            model = self.runner.model

        model.gradient_checkpointing_disable()
        model.eval()
        model.cuda()

        rank = get_rank()
        metrics = []
        # Ensure that eta and log are displayed correctly.
        current_run_total_ids = 0
        for _, dataset in enumerate(self.dataloader.dataset.datasets):
            if not hasattr(model, 'preparing_for_generation'):
                model.preparing_for_generation = MethodType(default_preparing_for_generation, model)
                print("Warning, the model do not have the preparing_for_generation() function, using the default!!!")
            model.preparing_for_generation(dataset.metainfo)

            # split per rank
            results = []
            n_samples = len(dataset)
            per_rank_samples = math.ceil(n_samples / get_world_size())
            running_tot = per_rank_samples * get_world_size()
            assert running_tot >= n_samples
            per_rank_ids = range(per_rank_samples * rank, per_rank_samples * (rank + 1))
            for idx in per_rank_ids:
                if n_samples <= idx:
                    data_batch = dataset[n_samples - 1]
                else:
                    data_batch = dataset[idx]
                self.run_iter(current_run_total_ids, data_batch, results, model)
                current_run_total_ids += 1

            barrier()
            self.runner.logger.info('==================== Start collect results ===================')
            results = collect_results(results, n_samples)
            self.runner.logger.info('========= Starting the evaluation of a data ===========')
            if is_main_process():
                metric = dataset.evaluate(results, self.runner.work_dir)
                objects = [metric]
            else:
                objects = [None]
            broadcast_object_list(objects)
            metric = objects[0]
            metrics.append(metric)

        # select metrics
        if self.select_metric == 'first':
            metrics = metrics[0]
        else:
            raise NotImplementedError

        self.runner.logger.info('================ Ending test loop ================')
        self.runner.call_hook('after_test_epoch', metrics=metrics)
        self.runner.call_hook('after_test')
        return metrics

    @torch.no_grad()
    def run_iter(self, idx, data_batch, results, model):
        prediction = {'video_id': data_batch['video_id']}

        self.runner.call_hook(
            'before_test_iter', batch_idx=idx, data_batch=data_batch)

        outputs = model.predict_forward(**data_batch)
        prediction.update(outputs)
        results.append(prediction)

        if self.visualize:
            # if not prediction['is_exists'][0].all():
            #     print(prediction['is_exists'])
            visualize(data_batch=data_batch, prediction=prediction, visualize_path=self.visualize)

        self.runner.call_hook(
            'after_test_iter',
            batch_idx=idx,
            data_batch=data_batch,
            outputs=outputs)

def default_preparing_for_generation(self, metainfo):
    # set stop criteria and generation configs for model

    assert hasattr(self, 'tokenizer'), "The Model does not have the tokenizer!!!"

    self.bot_name = 'BOT'
    template = PROMPT_TEMPLATE['internlm2_chat']
    self.template = template
    stop_words = []
    stop_words += template.get('STOP_WORDS', [])
    stop_criteria = get_stop_criteria(
        tokenizer=self.tokenizer, stop_words=stop_words)
    self.stop_criteria = stop_criteria

    default_generation_kwargs = dict(
        max_new_tokens=2048,
        do_sample=False,
        eos_token_id=self.tokenizer.eos_token_id,
        pad_token_id=(
            self.tokenizer.pad_token_id
            if self.tokenizer.pad_token_id is not None
            else self.tokenizer.eos_token_id
        ),
    )
    default_generation_kwargs.update(metainfo.get('generation_kwargs', {}))
    self.gen_config = GenerationConfig(**default_generation_kwargs)
    return