File size: 7,808 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.

// This source code is licensed under the license found in the
// LICENSE file in the root directory of this source tree.

// adapted from https://github.com/zsef123/Connected_components_PyTorch
// with license found in the LICENSE_cctorch file in the root directory.
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include <torch/script.h>
#include <vector>

// 2d
#define BLOCK_ROWS 16
#define BLOCK_COLS 16

namespace cc2d {

template <typename T>
__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
  return (bitmap >> pos) & 1;
}

__device__ int32_t find(const int32_t* s_buf, int32_t n) {
  while (s_buf[n] != n)
    n = s_buf[n];
  return n;
}

__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
  const int32_t id = n;
  while (s_buf[n] != n) {
    n = s_buf[n];
    s_buf[id] = n;
  }
  return n;
}

__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
  bool done;
  do {
    a = find(s_buf, a);
    b = find(s_buf, b);

    if (a < b) {
      int32_t old = atomicMin(s_buf + b, a);
      done = (old == b);
      b = old;
    } else if (b < a) {
      int32_t old = atomicMin(s_buf + a, b);
      done = (old == a);
      a = old;
    } else
      done = true;

  } while (!done);
}

__global__ void
init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
  const uint32_t idx = row * W + col;

  if (row < H && col < W)
    label[idx] = idx;
}

__global__ void
merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
  const uint32_t idx = row * W + col;

  if (row >= H || col >= W)
    return;

  uint32_t P = 0;

  if (img[idx])
    P |= 0x777;
  if (row + 1 < H && img[idx + W])
    P |= 0x777 << 4;
  if (col + 1 < W && img[idx + 1])
    P |= 0x777 << 1;

  if (col == 0)
    P &= 0xEEEE;
  if (col + 1 >= W)
    P &= 0x3333;
  else if (col + 2 >= W)
    P &= 0x7777;

  if (row == 0)
    P &= 0xFFF0;
  if (row + 1 >= H)
    P &= 0xFF;

  if (P > 0) {
    // If need check about top-left pixel(if flag the first bit) and hit the
    // top-left pixel
    if (hasBit(P, 0) && img[idx - W - 1]) {
      union_(label, idx, idx - 2 * W - 2); // top left block
    }

    if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
      union_(label, idx, idx - 2 * W); // top bottom block

    if (hasBit(P, 3) && img[idx + 2 - W])
      union_(label, idx, idx - 2 * W + 2); // top right block

    if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
      union_(label, idx, idx - 2); // just left block
  }
}

__global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
  const uint32_t idx = row * W + col;

  if (row < H && col < W)
    find_n_compress(label, idx);
}

__global__ void final_labeling(
    const uint8_t* img,
    int32_t* label,
    const int32_t W,
    const int32_t H) {
  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
  const uint32_t idx = row * W + col;

  if (row >= H || col >= W)
    return;

  int32_t y = label[idx] + 1;

  if (img[idx])
    label[idx] = y;
  else
    label[idx] = 0;

  if (col + 1 < W) {
    if (img[idx + 1])
      label[idx + 1] = y;
    else
      label[idx + 1] = 0;

    if (row + 1 < H) {
      if (img[idx + W + 1])
        label[idx + W + 1] = y;
      else
        label[idx + W + 1] = 0;
    }
  }

  if (row + 1 < H) {
    if (img[idx + W])
      label[idx + W] = y;
    else
      label[idx + W] = 0;
  }
}

__global__ void init_counting(
    const int32_t* label,
    int32_t* count_init,
    const int32_t W,
    const int32_t H) {
  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
  const uint32_t idx = row * W + col;

  if (row >= H || col >= W)
    return;

  int32_t y = label[idx];
  if (y > 0) {
    int32_t count_idx = y - 1;
    atomicAdd(count_init + count_idx, 1);
  }
}

__global__ void final_counting(
    const int32_t* label,
    const int32_t* count_init,
    int32_t* count_final,
    const int32_t W,
    const int32_t H) {
  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
  const uint32_t idx = row * W + col;

  if (row >= H || col >= W)
    return;

  int32_t y = label[idx];
  if (y > 0) {
    int32_t count_idx = y - 1;
    count_final[idx] = count_init[count_idx];
  } else {
    count_final[idx] = 0;
  }
}

} // namespace cc2d

std::vector<torch::Tensor> get_connected_componnets(
    const torch::Tensor& inputs) {
  AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
  AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
  AT_ASSERTM(
      inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");

  const uint32_t N = inputs.size(0);
  const uint32_t C = inputs.size(1);
  const uint32_t H = inputs.size(2);
  const uint32_t W = inputs.size(3);

  AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
  AT_ASSERTM((H % 2) == 0, "height must be an even number");
  AT_ASSERTM((W % 2) == 0, "width must be an even number");

  // label must be uint32_t
  auto label_options =
      torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
  torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
  torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
  torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);

  dim3 grid = dim3(
      ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
      ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
  dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
  dim3 grid_count =
      dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
  dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

  for (int n = 0; n < N; n++) {
    uint32_t offset = n * H * W;

    cc2d::init_labeling<<<grid, block, 0, stream>>>(
        labels.data_ptr<int32_t>() + offset, W, H);
    cc2d::merge<<<grid, block, 0, stream>>>(
        inputs.data_ptr<uint8_t>() + offset,
        labels.data_ptr<int32_t>() + offset,
        W,
        H);
    cc2d::compression<<<grid, block, 0, stream>>>(
        labels.data_ptr<int32_t>() + offset, W, H);
    cc2d::final_labeling<<<grid, block, 0, stream>>>(
        inputs.data_ptr<uint8_t>() + offset,
        labels.data_ptr<int32_t>() + offset,
        W,
        H);

    // get the counting of each pixel
    cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
        labels.data_ptr<int32_t>() + offset,
        counts_init.data_ptr<int32_t>() + offset,
        W,
        H);
    cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
        labels.data_ptr<int32_t>() + offset,
        counts_init.data_ptr<int32_t>() + offset,
        counts_final.data_ptr<int32_t>() + offset,
        W,
        H);
  }

  // returned values are [labels, counts]
  std::vector<torch::Tensor> outputs;
  outputs.push_back(labels);
  outputs.push_back(counts_final);
  return outputs;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def(
      "get_connected_componnets",
      &get_connected_componnets,
      "get_connected_componnets");
}