Spaces:
Running
Running
File size: 6,732 Bytes
20d05ae 0cb3834 66d588d 0cb3834 20d05ae 0cb3834 42cf67e 0cb3834 66d588d 0cb3834 20d05ae 0cb3834 20d05ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
from inference import Inference
import os
import zipfile
import hashlib
from utils.model import model_downloader, get_model
import requests
import json
api_url = "https://rvc-models-api.onrender.com/uploadfile/"
zips_folder = "./zips"
unzips_folder = "./unzips"
if not os.path.exists(zips_folder):
os.mkdir(zips_folder)
if not os.path.exists(unzips_folder):
os.mkdir(unzips_folder)
def calculate_md5(file_path):
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def compress(modelname, files):
file_path = os.path.join(zips_folder, f"{modelname}.zip")
# Select the compression mode ZIP_DEFLATED for compression
# or zipfile.ZIP_STORED to just store the file
compression = zipfile.ZIP_DEFLATED
# Comprueba si el archivo ZIP ya existe
if not os.path.exists(file_path):
# Si no existe, crea el archivo ZIP
with zipfile.ZipFile(file_path, mode="w") as zf:
try:
for file in files:
if file:
# Agrega el archivo al archivo ZIP
zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression)
except FileNotFoundError as fnf:
print("An error occurred", fnf)
else:
# Si el archivo ZIP ya existe, agrega los archivos a un archivo ZIP existente
with zipfile.ZipFile(file_path, mode="a") as zf:
try:
for file in files:
if file:
# Agrega el archivo al archivo ZIP
zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression)
except FileNotFoundError as fnf:
print("An error occurred", fnf)
return file_path
def infer(model, f0_method, audio_file):
print("****", audio_file)
inference = Inference(
model_name=model,
f0_method=f0_method,
source_audio_path=audio_file,
output_file_name=os.path.join("./audio-outputs", os.path.basename(audio_file))
)
output = inference.run()
if 'success' in output and output['success']:
return output, output['file']
else:
return
def post_model(name, model_url, version, creator):
modelname = model_downloader(model_url, zips_folder, unzips_folder)
model_files = get_model(unzips_folder, modelname)
if not model_files:
return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo más tarde."
if not model_files.get('pth'):
return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo más tarde."
md5_hash = calculate_md5(os.path.join(unzips_folder,model_files['pth']))
zipfile = compress(modelname, list(model_files.values()))
file_to_upload = open(zipfile, "rb")
data = {
"name": name,
"version": version,
"creator": creator,
"hash": md5_hash
}
print("Subiendo archivo...")
# Realizar la solicitud POST
response = requests.post(api_url, files={"file": file_to_upload}, data=data)
# Comprobar la respuesta
if response.status_code == 200:
result = response.json()
return json.dumps(result, indent=4)
else:
print("Error al cargar el archivo:", response.status_code)
return result
def search_model(name):
web_service_url = "https://script.google.com/macros/s/AKfycbzfIOiwmPj-q8-hEyvjRQfgLtO7ESolmtsQmnNheCujwnitDApBSjgTecdfXb8f2twT/exec"
response = requests.post(web_service_url, json={
'type': 'search_by_filename',
'name': name
})
result = []
response.raise_for_status() # Lanza una excepción en caso de error
json_response = response.json()
cont = 0
if json_response.get('ok', None):
for model in json_response['ocurrences']:
if cont < 20:
model_name = model.get('name', 'N/A')
model_url = model.get('url', 'N/A')
result.append(f"**Nombre del modelo: {model_name}**</br>{model_url}</br>")
yield "</br>".join(result)
cont += 1
with gr.Blocks() as app:
gr.HTML("<h1> Simple RVC Inference - by Juuxn 💻 </h1>")
with gr.Tab("Inferencia"):
model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Url del modelo", show_label=True)
audio_path = gr.Audio(label="Archivo de audio", show_label=True, type="filepath", )
f0_method = gr.Dropdown(choices=["harvest", "pm", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny", "rmvpe"],
value="harvest",
label="Algoritmo", show_label=True)
# Salida
with gr.Row():
vc_output1 = gr.Textbox(label="Salida")
vc_output2 = gr.Audio(label="Audio de salida")
btn = gr.Button(value="Convertir")
btn.click(infer, inputs=[model_url, f0_method, audio_path], outputs=[vc_output1, vc_output2])
with gr.Tab("Recursos"):
gr.HTML("<h4>Buscar modelos</h4>")
search_name = gr.Textbox(placeholder="Billie Eillish (RVC v2 - 100 epoch)", label="Nombre", show_label=True)
# Salida
with gr.Row():
sarch_output = gr.Markdown(label="Salida")
btn_search_model = gr.Button(value="Buscar")
btn_search_model.click(fn=search_model, inputs=[search_name], outputs=[sarch_output])
gr.HTML("<h4>Publica tu modelo</h4>")
post_name = gr.Textbox(placeholder="Billie Eillish (RVC v2 - 100 epoch)", label="Nombre", show_label=True)
post_model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Url del modelo", show_label=True)
post_creator = gr.Textbox(placeholder="ID de discord o enlace al perfil del creador", label="Creador", show_label=True)
post_version = gr.Dropdown(choices=["RVC v1", "RVC v2"], value="RVC v1", label="Versión", show_label=True)
# Salida
with gr.Row():
post_output = gr.Markdown(label="Salida")
btn_post_model = gr.Button(value="Publicar")
btn_post_model.click(fn=post_model, inputs=[post_name, post_model_url, post_version, post_creator], outputs=[post_output])
app.queue(concurrency_count=511, max_size=1022).launch(share=True) |