Spaces:
Running
Running
File size: 6,847 Bytes
20d05ae a87192b 20d05ae aeaba46 af36c4d aeaba46 20d05ae 826f537 20d05ae 3961eb2 20d05ae 42cf67e 20d05ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import infer_web
import wget
import os
import scipy.io.wavfile as wavfile
from utils import model
import validators
from myutils import delete_files
class Inference:
inference_cont = 0
def __init__(
self,
model_name=None,
source_audio_path=None,
output_file_name=None,
feature_index_path="",
f0_file=None,
speaker_id=0,
transposition=0,
f0_method="harvest",
crepe_hop_length=160,
harvest_median_filter=3,
resample=0,
mix=1,
feature_ratio=0.78,
protection_amnt=0.33,
protect1=False
):
Inference.inference_cont += 1
self._model_name = model_name
self._source_audio_path = source_audio_path
self._output_file_name = output_file_name
self._feature_index_path = feature_index_path
self._f0_file = f0_file
self._speaker_id = speaker_id
self._transposition = transposition
self._f0_method = f0_method
self._crepe_hop_length = crepe_hop_length
self._harvest_median_filter = harvest_median_filter
self._resample = resample
self._mix = mix
self._feature_ratio = feature_ratio
self._protection_amnt = protection_amnt
self._protect1 = protect1
self._id = Inference.inference_cont
if not os.path.exists("./hubert_base.pt"):
wget.download(
"https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt", out="./hubert_base.pt")
if not os.path.exists("./rmvpe.pt"):
wget.download(
"https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt", out="./rmvpe.pt"
)
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def audio(self):
return self._audio
@audio.setter
def audio_file(self, audio):
self._audio_file = audio
@property
def model_name(self):
return self._model_name
@model_name.setter
def model_name(self, model_name):
self._model_name = model_name
@property
def source_audio_path(self):
return self._source_audio_path
@source_audio_path.setter
def source_audio_path(self, source_audio_path):
if not self._output_file_name:
self._output_file_name = os.path.join("./audio-outputs", os.path.basename(source_audio_path))
self._source_audio_path = source_audio_path
@property
def output_file_name(self):
return self._output_file_name
@output_file_name.setter
def output_file_name(self, output_file_name):
self._output_file_name = output_file_name
@property
def feature_index_path(self):
return self._feature_index_path
@feature_index_path.setter
def feature_index_path(self, feature_index_path):
self._feature_index_path = feature_index_path
@property
def f0_file(self):
return self._f0_file
@f0_file.setter
def f0_file(self, f0_file):
self._f0_file = f0_file
@property
def speaker_id(self):
return self._speaker_id
@speaker_id.setter
def speaker_id(self, speaker_id):
self._speaker_id = speaker_id
@property
def transposition(self):
return self._transposition
@transposition.setter
def transposition(self, transposition):
self._transposition = transposition
@property
def f0_method(self):
return self._f0_method
@f0_method.setter
def f0_method(self, f0_method):
self._f0_method = f0_method
@property
def crepe_hop_length(self):
return self._crepe_hop_length
@crepe_hop_length.setter
def crepe_hop_length(self, crepe_hop_length):
self._crepe_hop_length = crepe_hop_length
@property
def harvest_median_filter(self):
return self._harvest_median_filter
@crepe_hop_length.setter
def harvest_median_filter(self, harvest_median_filter):
self._harvest_median_filter = harvest_median_filter
@property
def resample(self):
return self._resample
@resample.setter
def resample(self, resample):
self._resample = resample
@property
def mix(self):
return self._mix
@mix.setter
def mix(self, mix):
self._mix = mix
@property
def feature_ratio(self):
return self._feature_ratio
@feature_ratio.setter
def feature_ratio(self, feature_ratio):
self._feature_ratio = feature_ratio
@property
def protection_amnt(self):
return self._protection_amnt
@protection_amnt.setter
def protection_amnt(self, protection_amnt):
self._protection_amnt = protection_amnt
@property
def protect1(self):
return self._protect1
@protect1.setter
def protect1(self, protect1):
self._protect1 = protect1
def run(self):
current_dir = os.getcwd()
modelname = model.model_downloader(
self._model_name, "./zips/", "./weights/")
if not modelname:
return "No se ha podido descargar el modelo, intenta con otro enlace o intentalo más tarde."
model_info = model.get_model(os.path.join(current_dir, 'weights') , modelname)
if not model_info:
return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo más tarde."
if not model_info.get('pth'):
return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo más tarde."
index = model_info.get('index', '')
pth = model_info.get('pth', None)
infer_web.get_vc(pth)
conversion_data = infer_web.vc_single(
self.speaker_id,
self.source_audio_path,
self.source_audio_path,
self.transposition,
self.f0_file,
self.f0_method,
index,
index,
self.feature_ratio,
self.harvest_median_filter,
self.resample,
self.mix,
self.protection_amnt,
self.crepe_hop_length,
)
if "Success." in conversion_data[0]:
wavfile.write(
"%s/%s" % ("audio-outputs",os.path.basename(self._output_file_name)),
conversion_data[1][0],
conversion_data[1][1],
)
return({
"success": True,
"file": self._output_file_name
})
else:
return({
"success": False,
"file": self._output_file_name
})
#print(conversion_data[0]) |