from diffsynth import ModelManager, SDImagePipeline, download_models import torch # Download models (automatically) # `models/stable_diffusion/aingdiffusion_v12.safetensors`: [link](https://civitai.com/api/download/models/229575?type=Model&format=SafeTensor&size=full&fp=fp16) # `models/IpAdapter/stable_diffusion/image_encoder/model.safetensors`: [link](https://huggingface.co/h94/IP-Adapter/resolve/main/models/image_encoder/model.safetensors) # `models/IpAdapter/stable_diffusion/ip-adapter_sd15.bin`: [link](https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter_sd15.bin) # `models/textual_inversion/verybadimagenegative_v1.3.pt`: [link](https://civitai.com/api/download/models/25820?type=Model&format=PickleTensor&size=full&fp=fp16) download_models(["AingDiffusion_v12", "IP-Adapter-SD", "TextualInversion_VeryBadImageNegative_v1.3"]) # Load models model_manager = ModelManager(torch_dtype=torch.float16, device="cuda") model_manager.load_textual_inversions("models/textual_inversion") model_manager.load_models([ "models/stable_diffusion/aingdiffusion_v12.safetensors", "models/IpAdapter/stable_diffusion/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion/ip-adapter_sd15.bin" ]) pipe = SDImagePipeline.from_model_manager(model_manager) torch.manual_seed(1) style_image = pipe( prompt="masterpiece, best quality, a car", negative_prompt="verybadimagenegative_v1.3", cfg_scale=7, clip_skip=2, height=512, width=512, num_inference_steps=50, ) style_image.save("car.jpg") image = pipe( prompt="masterpiece, best quality, a car running on the road", negative_prompt="verybadimagenegative_v1.3", cfg_scale=7, clip_skip=2, height=512, width=512, num_inference_steps=50, ipadapter_images=[style_image], ipadapter_scale=1.0 ) image.save("car_on_the_road.jpg")