kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
import torch
class FlowMatchScheduler():
def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003/1.002):
self.num_train_timesteps = num_train_timesteps
self.shift = shift
self.sigma_max = sigma_max
self.sigma_min = sigma_min
self.set_timesteps(num_inference_steps)
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0):
sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength
self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps)
self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas)
self.timesteps = self.sigmas * self.num_train_timesteps
def step(self, model_output, timestep, sample, to_final=False):
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
if to_final or timestep_id + 1 >= len(self.timesteps):
sigma_ = 0
else:
sigma_ = self.sigmas[timestep_id + 1]
prev_sample = sample + model_output * (sigma_ - sigma)
return prev_sample
def return_to_timestep(self, timestep, sample, sample_stablized):
# This scheduler doesn't support this function.
pass
def add_noise(self, original_samples, noise, timestep):
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
sample = (1 - sigma) * original_samples + sigma * noise
return sample
def training_target(self, sample, noise, timestep):
target = noise - sample
return target