Diffutoon / diffsynth /pipelines /stable_diffusion.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
from ..models import ModelManager, SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompts import SDPrompter
from ..schedulers import EnhancedDDIMScheduler
from .dancer import lets_dance
from typing import List
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
class SDImagePipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__()
self.scheduler = EnhancedDDIMScheduler()
self.prompter = SDPrompter()
self.device = device
self.torch_dtype = torch_dtype
# models
self.text_encoder: SDTextEncoder = None
self.unet: SDUNet = None
self.vae_decoder: SDVAEDecoder = None
self.vae_encoder: SDVAEEncoder = None
self.controlnet: MultiControlNetManager = None
self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None
self.ipadapter: SDIpAdapter = None
def fetch_main_models(self, model_manager: ModelManager):
self.text_encoder = model_manager.text_encoder
self.unet = model_manager.unet
self.vae_decoder = model_manager.vae_decoder
self.vae_encoder = model_manager.vae_encoder
def fetch_controlnet_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
controlnet_units = []
for config in controlnet_config_units:
controlnet_unit = ControlNetUnit(
Annotator(config.processor_id, device=self.device),
model_manager.get_model_with_model_path(config.model_path),
config.scale
)
controlnet_units.append(controlnet_unit)
self.controlnet = MultiControlNetManager(controlnet_units)
def fetch_ipadapter(self, model_manager: ModelManager):
if "ipadapter" in model_manager.model:
self.ipadapter = model_manager.ipadapter
if "ipadapter_image_encoder" in model_manager.model:
self.ipadapter_image_encoder = model_manager.ipadapter_image_encoder
def fetch_prompter(self, model_manager: ModelManager):
self.prompter.load_from_model_manager(model_manager)
@staticmethod
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
pipe = SDImagePipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_main_models(model_manager)
pipe.fetch_prompter(model_manager)
pipe.fetch_controlnet_models(model_manager, controlnet_config_units)
pipe.fetch_ipadapter(model_manager)
return pipe
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
image = image.cpu().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
input_image=None,
ipadapter_images=None,
ipadapter_scale=1.0,
controlnet_image=None,
denoising_strength=1.0,
height=512,
width=512,
num_inference_steps=20,
tiled=False,
tile_size=64,
tile_stride=32,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if input_image is not None:
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
# Encode prompts
prompt_emb_posi = self.prompter.encode_prompt(self.text_encoder, prompt, clip_skip=clip_skip, device=self.device, positive=True)
prompt_emb_nega = self.prompter.encode_prompt(self.text_encoder, negative_prompt, clip_skip=clip_skip, device=self.device, positive=False)
# IP-Adapter
if ipadapter_images is not None:
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images)
ipadapter_kwargs_list_posi = self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)
ipadapter_kwargs_list_nega = self.ipadapter(torch.zeros_like(ipadapter_image_encoding))
else:
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {}, {}
# Prepare ControlNets
if controlnet_image is not None:
controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype)
controlnet_image = controlnet_image.unsqueeze(1)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = torch.IntTensor((timestep,))[0].to(self.device)
# Classifier-free guidance
noise_pred_posi = lets_dance(
self.unet, motion_modules=None, controlnet=self.controlnet,
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_image,
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
ipadapter_kwargs_list=ipadapter_kwargs_list_posi,
device=self.device, vram_limit_level=0
)
noise_pred_nega = lets_dance(
self.unet, motion_modules=None, controlnet=self.controlnet,
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_image,
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
ipadapter_kwargs_list=ipadapter_kwargs_list_nega,
device=self.device, vram_limit_level=0
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
# DDIM
latents = self.scheduler.step(noise_pred, timestep, latents)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return image