Diffutoon / diffsynth /pipelines /hunyuan_dit.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
from ..models.hunyuan_dit import HunyuanDiT
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
from ..models.sdxl_vae_encoder import SDXLVAEEncoder
from ..models.sdxl_vae_decoder import SDXLVAEDecoder
from ..models import ModelManager
from ..prompts import HunyuanDiTPrompter
from ..schedulers import EnhancedDDIMScheduler
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
class ImageSizeManager:
def __init__(self):
pass
def _to_tuple(self, x):
if isinstance(x, int):
return x, x
else:
return x
def get_fill_resize_and_crop(self, src, tgt):
th, tw = self._to_tuple(tgt)
h, w = self._to_tuple(src)
tr = th / tw # base ๅˆ†่พจ็Ž‡
r = h / w # ็›ฎๆ ‡ๅˆ†่พจ็Ž‡
# resize
if r > tr:
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h)) # ๆ นๆฎbaseๅˆ†่พจ็Ž‡๏ผŒๅฐ†็›ฎๆ ‡ๅˆ†่พจ็Ž‡resizeไธ‹ๆฅ
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
def get_meshgrid(self, start, *args):
if len(args) == 0:
# start is grid_size
num = self._to_tuple(start)
start = (0, 0)
stop = num
elif len(args) == 1:
# start is start, args[0] is stop, step is 1
start = self._to_tuple(start)
stop = self._to_tuple(args[0])
num = (stop[0] - start[0], stop[1] - start[1])
elif len(args) == 2:
# start is start, args[0] is stop, args[1] is num
start = self._to_tuple(start) # ๅทฆไธŠ่ง’ eg: 12,0
stop = self._to_tuple(args[0]) # ๅณไธ‹่ง’ eg: 20,32
num = self._to_tuple(args[1]) # ็›ฎๆ ‡ๅคงๅฐ eg: 32,124
else:
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32) # 12-20 ไธญ้—ดๅทฎๅ€ผ32ไปฝ 0-32 ไธญ้—ดๅทฎๅ€ผ124ไปฝ
grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0) # [2, W, H]
return grid
def get_2d_rotary_pos_embed(self, embed_dim, start, *args, use_real=True):
grid = self.get_meshgrid(start, *args) # [2, H, w]
grid = grid.reshape([2, 1, *grid.shape[1:]]) # ่ฟ”ๅ›žไธ€ไธช้‡‡ๆ ท็Ÿฉ้˜ต ๅˆ†่พจ็Ž‡ไธŽ็›ฎๆ ‡ๅˆ†่พจ็Ž‡ไธ€่‡ด
pos_embed = self.get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
return pos_embed
def get_2d_rotary_pos_embed_from_grid(self, embed_dim, grid, use_real=False):
assert embed_dim % 4 == 0
# use half of dimensions to encode grid_h
emb_h = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4)
emb_w = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4)
if use_real:
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2)
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2)
return cos, sin
else:
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
return emb
def get_1d_rotary_pos_embed(self, dim: int, pos, theta: float = 10000.0, use_real=False):
if isinstance(pos, int):
pos = np.arange(pos)
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2]
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
if use_real:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
return freqs_cos, freqs_sin
else:
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
def calc_rope(self, height, width):
patch_size = 2
head_size = 88
th = height // 8 // patch_size
tw = width // 8 // patch_size
base_size = 512 // 8 // patch_size
start, stop = self.get_fill_resize_and_crop((th, tw), base_size)
sub_args = [start, stop, (th, tw)]
rope = self.get_2d_rotary_pos_embed(head_size, *sub_args)
return rope
class HunyuanDiTImagePipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__()
self.scheduler = EnhancedDDIMScheduler(prediction_type="v_prediction", beta_start=0.00085, beta_end=0.03)
self.prompter = HunyuanDiTPrompter()
self.device = device
self.torch_dtype = torch_dtype
self.image_size_manager = ImageSizeManager()
# models
self.text_encoder: HunyuanDiTCLIPTextEncoder = None
self.text_encoder_t5: HunyuanDiTT5TextEncoder = None
self.dit: HunyuanDiT = None
self.vae_decoder: SDXLVAEDecoder = None
self.vae_encoder: SDXLVAEEncoder = None
def fetch_main_models(self, model_manager: ModelManager):
self.text_encoder = model_manager.hunyuan_dit_clip_text_encoder
self.text_encoder_t5 = model_manager.hunyuan_dit_t5_text_encoder
self.dit = model_manager.hunyuan_dit
self.vae_decoder = model_manager.vae_decoder
self.vae_encoder = model_manager.vae_encoder
def fetch_prompter(self, model_manager: ModelManager):
self.prompter.load_from_model_manager(model_manager)
@staticmethod
def from_model_manager(model_manager: ModelManager):
pipe = HunyuanDiTImagePipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_main_models(model_manager)
pipe.fetch_prompter(model_manager)
return pipe
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
image = image.cpu().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
def prepare_extra_input(self, height=1024, width=1024, tiled=False, tile_size=64, tile_stride=32, batch_size=1):
if tiled:
height, width = tile_size * 16, tile_size * 16
image_meta_size = torch.as_tensor([width, height, width, height, 0, 0]).to(device=self.device)
freqs_cis_img = self.image_size_manager.calc_rope(height, width)
image_meta_size = torch.stack([image_meta_size] * batch_size)
return {
"size_emb": image_meta_size,
"freq_cis_img": (freqs_cis_img[0].to(dtype=self.torch_dtype, device=self.device), freqs_cis_img[1].to(dtype=self.torch_dtype, device=self.device)),
"tiled": tiled,
"tile_size": tile_size,
"tile_stride": tile_stride
}
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
clip_skip_2=1,
input_image=None,
reference_images=[],
reference_strengths=[0.4],
denoising_strength=1.0,
height=1024,
width=1024,
num_inference_steps=20,
tiled=False,
tile_size=64,
tile_stride=32,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
if input_image is not None:
image = self.preprocess_image(input_image).to(device=self.device, dtype=torch.float32)
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = noise.clone()
# Prepare reference latents
reference_latents = []
for reference_image in reference_images:
reference_image = self.preprocess_image(reference_image).to(device=self.device, dtype=self.torch_dtype)
reference_latents.append(self.vae_encoder(reference_image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype))
# Encode prompts
prompt_emb_posi, attention_mask_posi, prompt_emb_t5_posi, attention_mask_t5_posi = self.prompter.encode_prompt(
self.text_encoder,
self.text_encoder_t5,
prompt,
clip_skip=clip_skip,
clip_skip_2=clip_skip_2,
positive=True,
device=self.device
)
if cfg_scale != 1.0:
prompt_emb_nega, attention_mask_nega, prompt_emb_t5_nega, attention_mask_t5_nega = self.prompter.encode_prompt(
self.text_encoder,
self.text_encoder_t5,
negative_prompt,
clip_skip=clip_skip,
clip_skip_2=clip_skip_2,
positive=False,
device=self.device
)
# Prepare positional id
extra_input = self.prepare_extra_input(height, width, tiled, tile_size)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = torch.tensor([timestep]).to(dtype=self.torch_dtype, device=self.device)
# In-context reference
for reference_latents_, reference_strength in zip(reference_latents, reference_strengths):
if progress_id < num_inference_steps * reference_strength:
noisy_reference_latents = self.scheduler.add_noise(reference_latents_, noise, self.scheduler.timesteps[progress_id])
self.dit(
noisy_reference_latents,
prompt_emb_posi, prompt_emb_t5_posi, attention_mask_posi, attention_mask_t5_posi,
timestep,
**extra_input,
to_cache=True
)
# Positive side
noise_pred_posi = self.dit(
latents,
prompt_emb_posi, prompt_emb_t5_posi, attention_mask_posi, attention_mask_t5_posi,
timestep,
**extra_input,
)
if cfg_scale != 1.0:
# Negative side
noise_pred_nega = self.dit(
latents,
prompt_emb_nega, prompt_emb_t5_nega, attention_mask_nega, attention_mask_t5_nega,
timestep,
**extra_input
)
# Classifier-free guidance
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
image = self.decode_image(latents.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return image