kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
2.14 kB
from ..patch_match import PyramidPatchMatcher
import os
import numpy as np
from PIL import Image
from tqdm import tqdm
class BalancedModeRunner:
def __init__(self):
pass
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Balanced Mode", save_path=None):
patch_match_engine = PyramidPatchMatcher(
image_height=frames_style[0].shape[0],
image_width=frames_style[0].shape[1],
channel=3,
**ebsynth_config
)
# tasks
n = len(frames_style)
tasks = []
for target in range(n):
for source in range(target - window_size, target + window_size + 1):
if source >= 0 and source < n and source != target:
tasks.append((source, target))
# run
frames = [(None, 1) for i in range(n)]
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc):
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
source_guide = np.stack([frames_guide[source] for source, target in tasks_batch])
target_guide = np.stack([frames_guide[target] for source, target in tasks_batch])
source_style = np.stack([frames_style[source] for source, target in tasks_batch])
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
for (source, target), result in zip(tasks_batch, target_style):
frame, weight = frames[target]
if frame is None:
frame = frames_style[target]
frames[target] = (
frame * (weight / (weight + 1)) + result / (weight + 1),
weight + 1
)
if weight + 1 == min(n, target + window_size + 1) - max(0, target - window_size):
frame = frame.clip(0, 255).astype("uint8")
if save_path is not None:
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target))
frames[target] = (None, 1)