File size: 8,309 Bytes
fb4fac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from .sd_unet import SDUNet, Attention, GEGLU
import torch
from einops import rearrange, repeat


class TemporalTransformerBlock(torch.nn.Module):

    def __init__(self, dim, num_attention_heads, attention_head_dim, max_position_embeddings=32):
        super().__init__()

        # 1. Self-Attn
        self.pe1 = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, dim))
        self.norm1 = torch.nn.LayerNorm(dim, elementwise_affine=True)
        self.attn1 = Attention(q_dim=dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True)

        # 2. Cross-Attn
        self.pe2 = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, dim))
        self.norm2 = torch.nn.LayerNorm(dim, elementwise_affine=True)
        self.attn2 = Attention(q_dim=dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True)

        # 3. Feed-forward
        self.norm3 = torch.nn.LayerNorm(dim, elementwise_affine=True)
        self.act_fn = GEGLU(dim, dim * 4)
        self.ff = torch.nn.Linear(dim * 4, dim)


    def forward(self, hidden_states, batch_size=1):

        # 1. Self-Attention
        norm_hidden_states = self.norm1(hidden_states)
        norm_hidden_states = rearrange(norm_hidden_states, "(b f) h c -> (b h) f c", b=batch_size)
        attn_output = self.attn1(norm_hidden_states + self.pe1[:, :norm_hidden_states.shape[1]])
        attn_output = rearrange(attn_output, "(b h) f c -> (b f) h c", b=batch_size)
        hidden_states = attn_output + hidden_states

        # 2. Cross-Attention
        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = rearrange(norm_hidden_states, "(b f) h c -> (b h) f c", b=batch_size)
        attn_output = self.attn2(norm_hidden_states + self.pe2[:, :norm_hidden_states.shape[1]])
        attn_output = rearrange(attn_output, "(b h) f c -> (b f) h c", b=batch_size)
        hidden_states = attn_output + hidden_states

        # 3. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)
        ff_output = self.act_fn(norm_hidden_states)
        ff_output = self.ff(ff_output)
        hidden_states = ff_output + hidden_states

        return hidden_states


class TemporalBlock(torch.nn.Module):
    
    def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, norm_num_groups=32, eps=1e-5):
        super().__init__()
        inner_dim = num_attention_heads * attention_head_dim

        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True)
        self.proj_in = torch.nn.Linear(in_channels, inner_dim)

        self.transformer_blocks = torch.nn.ModuleList([
            TemporalTransformerBlock(
                inner_dim,
                num_attention_heads,
                attention_head_dim
            )
            for d in range(num_layers)
        ])

        self.proj_out = torch.nn.Linear(inner_dim, in_channels)

    def forward(self, hidden_states, time_emb, text_emb, res_stack, batch_size=1):
        batch, _, height, width = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
        hidden_states = self.proj_in(hidden_states)

        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                batch_size=batch_size
            )

        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
        hidden_states = hidden_states + residual

        return hidden_states, time_emb, text_emb, res_stack


class SDMotionModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.motion_modules = torch.nn.ModuleList([
            TemporalBlock(8, 40, 320, eps=1e-6),
            TemporalBlock(8, 40, 320, eps=1e-6),
            TemporalBlock(8, 80, 640, eps=1e-6),
            TemporalBlock(8, 80, 640, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 160, 1280, eps=1e-6),
            TemporalBlock(8, 80, 640, eps=1e-6),
            TemporalBlock(8, 80, 640, eps=1e-6),
            TemporalBlock(8, 80, 640, eps=1e-6),
            TemporalBlock(8, 40, 320, eps=1e-6),
            TemporalBlock(8, 40, 320, eps=1e-6),
            TemporalBlock(8, 40, 320, eps=1e-6),
        ])
        self.call_block_id = {
            1: 0,
            4: 1,
            9: 2,
            12: 3,
            17: 4,
            20: 5,
            24: 6,
            26: 7,
            29: 8,
            32: 9,
            34: 10,
            36: 11,
            40: 12,
            43: 13,
            46: 14,
            50: 15,
            53: 16,
            56: 17,
            60: 18,
            63: 19,
            66: 20
        }
        
    def forward(self):
        pass

    def state_dict_converter(self):
        return SDMotionModelStateDictConverter()


class SDMotionModelStateDictConverter:
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        rename_dict = {
            "norm": "norm",
            "proj_in": "proj_in",
            "transformer_blocks.0.attention_blocks.0.to_q": "transformer_blocks.0.attn1.to_q",
            "transformer_blocks.0.attention_blocks.0.to_k": "transformer_blocks.0.attn1.to_k",
            "transformer_blocks.0.attention_blocks.0.to_v": "transformer_blocks.0.attn1.to_v",
            "transformer_blocks.0.attention_blocks.0.to_out.0": "transformer_blocks.0.attn1.to_out",
            "transformer_blocks.0.attention_blocks.0.pos_encoder": "transformer_blocks.0.pe1",
            "transformer_blocks.0.attention_blocks.1.to_q": "transformer_blocks.0.attn2.to_q",
            "transformer_blocks.0.attention_blocks.1.to_k": "transformer_blocks.0.attn2.to_k",
            "transformer_blocks.0.attention_blocks.1.to_v": "transformer_blocks.0.attn2.to_v",
            "transformer_blocks.0.attention_blocks.1.to_out.0": "transformer_blocks.0.attn2.to_out",
            "transformer_blocks.0.attention_blocks.1.pos_encoder": "transformer_blocks.0.pe2",
            "transformer_blocks.0.norms.0": "transformer_blocks.0.norm1",
            "transformer_blocks.0.norms.1": "transformer_blocks.0.norm2",
            "transformer_blocks.0.ff.net.0.proj": "transformer_blocks.0.act_fn.proj",
            "transformer_blocks.0.ff.net.2": "transformer_blocks.0.ff",
            "transformer_blocks.0.ff_norm": "transformer_blocks.0.norm3",
            "proj_out": "proj_out",
        }
        name_list = sorted([i for i in state_dict if i.startswith("down_blocks.")])
        name_list += sorted([i for i in state_dict if i.startswith("mid_block.")])
        name_list += sorted([i for i in state_dict if i.startswith("up_blocks.")])
        state_dict_ = {}
        last_prefix, module_id = "", -1
        for name in name_list:
            names = name.split(".")
            prefix_index = names.index("temporal_transformer") + 1
            prefix = ".".join(names[:prefix_index])
            if prefix != last_prefix:
                last_prefix = prefix
                module_id += 1
            middle_name = ".".join(names[prefix_index:-1])
            suffix = names[-1]
            if "pos_encoder" in names:
                rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name]])
            else:
                rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name], suffix])
            state_dict_[rename] = state_dict[name]
        return state_dict_
    
    def from_civitai(self, state_dict):
        return self.from_diffusers(state_dict)