File size: 48,241 Bytes
fb4fac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import torch
from .sd_unet import Timesteps, ResnetBlock, AttentionBlock, PushBlock, DownSampler
from .tiler import TileWorker


class ControlNetConditioningLayer(torch.nn.Module):
    def __init__(self, channels = (3, 16, 32, 96, 256, 320)):
        super().__init__()
        self.blocks = torch.nn.ModuleList([])
        self.blocks.append(torch.nn.Conv2d(channels[0], channels[1], kernel_size=3, padding=1))
        self.blocks.append(torch.nn.SiLU())
        for i in range(1, len(channels) - 2):
            self.blocks.append(torch.nn.Conv2d(channels[i], channels[i], kernel_size=3, padding=1))
            self.blocks.append(torch.nn.SiLU())
            self.blocks.append(torch.nn.Conv2d(channels[i], channels[i+1], kernel_size=3, padding=1, stride=2))
            self.blocks.append(torch.nn.SiLU())
        self.blocks.append(torch.nn.Conv2d(channels[-2], channels[-1], kernel_size=3, padding=1))

    def forward(self, conditioning):
        for block in self.blocks:
            conditioning = block(conditioning)
        return conditioning


class SDControlNet(torch.nn.Module):
    def __init__(self, global_pool=False):
        super().__init__()
        self.time_proj = Timesteps(320)
        self.time_embedding = torch.nn.Sequential(
            torch.nn.Linear(320, 1280),
            torch.nn.SiLU(),
            torch.nn.Linear(1280, 1280)
        )
        self.conv_in = torch.nn.Conv2d(4, 320, kernel_size=3, padding=1)

        self.controlnet_conv_in = ControlNetConditioningLayer(channels=(3, 16, 32, 96, 256, 320))

        self.blocks = torch.nn.ModuleList([
            # CrossAttnDownBlock2D
            ResnetBlock(320, 320, 1280),
            AttentionBlock(8, 40, 320, 1, 768),
            PushBlock(),
            ResnetBlock(320, 320, 1280),
            AttentionBlock(8, 40, 320, 1, 768),
            PushBlock(),
            DownSampler(320),
            PushBlock(),
            # CrossAttnDownBlock2D
            ResnetBlock(320, 640, 1280),
            AttentionBlock(8, 80, 640, 1, 768),
            PushBlock(),
            ResnetBlock(640, 640, 1280),
            AttentionBlock(8, 80, 640, 1, 768),
            PushBlock(),
            DownSampler(640),
            PushBlock(),
            # CrossAttnDownBlock2D
            ResnetBlock(640, 1280, 1280),
            AttentionBlock(8, 160, 1280, 1, 768),
            PushBlock(),
            ResnetBlock(1280, 1280, 1280),
            AttentionBlock(8, 160, 1280, 1, 768),
            PushBlock(),
            DownSampler(1280),
            PushBlock(),
            # DownBlock2D
            ResnetBlock(1280, 1280, 1280),
            PushBlock(),
            ResnetBlock(1280, 1280, 1280),
            PushBlock(),
            # UNetMidBlock2DCrossAttn
            ResnetBlock(1280, 1280, 1280),
            AttentionBlock(8, 160, 1280, 1, 768),
            ResnetBlock(1280, 1280, 1280),
            PushBlock()
        ])

        self.controlnet_blocks = torch.nn.ModuleList([
            torch.nn.Conv2d(320, 320, kernel_size=(1, 1)),
            torch.nn.Conv2d(320, 320, kernel_size=(1, 1), bias=False),
            torch.nn.Conv2d(320, 320, kernel_size=(1, 1), bias=False),
            torch.nn.Conv2d(320, 320, kernel_size=(1, 1), bias=False),
            torch.nn.Conv2d(640, 640, kernel_size=(1, 1)),
            torch.nn.Conv2d(640, 640, kernel_size=(1, 1), bias=False),
            torch.nn.Conv2d(640, 640, kernel_size=(1, 1), bias=False),
            torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1)),
            torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False),
            torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False),
            torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False),
            torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False),
            torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False),
        ])

        self.global_pool = global_pool

    def forward(
        self,
        sample, timestep, encoder_hidden_states, conditioning,
        tiled=False, tile_size=64, tile_stride=32,
    ):
        # 1. time
        time_emb = self.time_proj(timestep[None]).to(sample.dtype)
        time_emb = self.time_embedding(time_emb)
        time_emb = time_emb.repeat(sample.shape[0], 1)

        # 2. pre-process
        height, width = sample.shape[2], sample.shape[3]
        hidden_states = self.conv_in(sample) + self.controlnet_conv_in(conditioning)
        text_emb = encoder_hidden_states
        res_stack = [hidden_states]

        # 3. blocks
        for i, block in enumerate(self.blocks):
            if tiled and not isinstance(block, PushBlock):
                _, _, inter_height, _ = hidden_states.shape
                resize_scale = inter_height / height
                hidden_states = TileWorker().tiled_forward(
                    lambda x: block(x, time_emb, text_emb, res_stack)[0],
                    hidden_states,
                    int(tile_size * resize_scale),
                    int(tile_stride * resize_scale),
                    tile_device=hidden_states.device,
                    tile_dtype=hidden_states.dtype
                )
            else:
                hidden_states, _, _, _ = block(hidden_states, time_emb, text_emb, res_stack)

        # 4. ControlNet blocks
        controlnet_res_stack = [block(res) for block, res in zip(self.controlnet_blocks, res_stack)]

        # pool
        if self.global_pool:
            controlnet_res_stack = [res.mean(dim=(2, 3), keepdim=True) for res in controlnet_res_stack]

        return controlnet_res_stack

    def state_dict_converter(self):
        return SDControlNetStateDictConverter()


class SDControlNetStateDictConverter:
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        # architecture
        block_types = [
            'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock',
            'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock',
            'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock',
            'ResnetBlock', 'PushBlock', 'ResnetBlock', 'PushBlock', 
            'ResnetBlock', 'AttentionBlock', 'ResnetBlock',
            'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'UpSampler',
            'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler',
            'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler',
            'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock'
        ]

        # controlnet_rename_dict
        controlnet_rename_dict = {
            "controlnet_cond_embedding.conv_in.weight": "controlnet_conv_in.blocks.0.weight",
            "controlnet_cond_embedding.conv_in.bias": "controlnet_conv_in.blocks.0.bias",
            "controlnet_cond_embedding.blocks.0.weight": "controlnet_conv_in.blocks.2.weight",
            "controlnet_cond_embedding.blocks.0.bias": "controlnet_conv_in.blocks.2.bias",
            "controlnet_cond_embedding.blocks.1.weight": "controlnet_conv_in.blocks.4.weight",
            "controlnet_cond_embedding.blocks.1.bias": "controlnet_conv_in.blocks.4.bias",
            "controlnet_cond_embedding.blocks.2.weight": "controlnet_conv_in.blocks.6.weight",
            "controlnet_cond_embedding.blocks.2.bias": "controlnet_conv_in.blocks.6.bias",
            "controlnet_cond_embedding.blocks.3.weight": "controlnet_conv_in.blocks.8.weight",
            "controlnet_cond_embedding.blocks.3.bias": "controlnet_conv_in.blocks.8.bias",
            "controlnet_cond_embedding.blocks.4.weight": "controlnet_conv_in.blocks.10.weight",
            "controlnet_cond_embedding.blocks.4.bias": "controlnet_conv_in.blocks.10.bias",
            "controlnet_cond_embedding.blocks.5.weight": "controlnet_conv_in.blocks.12.weight",
            "controlnet_cond_embedding.blocks.5.bias": "controlnet_conv_in.blocks.12.bias",
            "controlnet_cond_embedding.conv_out.weight": "controlnet_conv_in.blocks.14.weight",
            "controlnet_cond_embedding.conv_out.bias": "controlnet_conv_in.blocks.14.bias",
        }

        # Rename each parameter
        name_list = sorted([name for name in state_dict])
        rename_dict = {}
        block_id = {"ResnetBlock": -1, "AttentionBlock": -1, "DownSampler": -1, "UpSampler": -1}
        last_block_type_with_id = {"ResnetBlock": "", "AttentionBlock": "", "DownSampler": "", "UpSampler": ""}
        for name in name_list:
            names = name.split(".")
            if names[0] in ["conv_in", "conv_norm_out", "conv_out"]:
                pass
            elif name in controlnet_rename_dict:
                names = controlnet_rename_dict[name].split(".")
            elif names[0] == "controlnet_down_blocks":
                names[0] = "controlnet_blocks"
            elif names[0] == "controlnet_mid_block":
                names = ["controlnet_blocks", "12", names[-1]]
            elif names[0] in ["time_embedding", "add_embedding"]:
                if names[0] == "add_embedding":
                    names[0] = "add_time_embedding"
                names[1] = {"linear_1": "0", "linear_2": "2"}[names[1]]
            elif names[0] in ["down_blocks", "mid_block", "up_blocks"]:
                if names[0] == "mid_block":
                    names.insert(1, "0")
                block_type = {"resnets": "ResnetBlock", "attentions": "AttentionBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[2]]
                block_type_with_id = ".".join(names[:4])
                if block_type_with_id != last_block_type_with_id[block_type]:
                    block_id[block_type] += 1
                last_block_type_with_id[block_type] = block_type_with_id
                while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type:
                    block_id[block_type] += 1
                block_type_with_id = ".".join(names[:4])
                names = ["blocks", str(block_id[block_type])] + names[4:]
                if "ff" in names:
                    ff_index = names.index("ff")
                    component = ".".join(names[ff_index:ff_index+3])
                    component = {"ff.net.0": "act_fn", "ff.net.2": "ff"}[component]
                    names = names[:ff_index] + [component] + names[ff_index+3:]
                if "to_out" in names:
                    names.pop(names.index("to_out") + 1)
            else:
                raise ValueError(f"Unknown parameters: {name}")
            rename_dict[name] = ".".join(names)

        # Convert state_dict
        state_dict_ = {}
        for name, param in state_dict.items():
            if ".proj_in." in name or ".proj_out." in name:
                param = param.squeeze()
            if rename_dict[name] in [
                "controlnet_blocks.1.bias", "controlnet_blocks.2.bias", "controlnet_blocks.3.bias", "controlnet_blocks.5.bias", "controlnet_blocks.6.bias",
                "controlnet_blocks.8.bias", "controlnet_blocks.9.bias", "controlnet_blocks.10.bias", "controlnet_blocks.11.bias", "controlnet_blocks.12.bias"
            ]:
                continue
            state_dict_[rename_dict[name]] = param
        return state_dict_
    
    def from_civitai(self, state_dict):
        if "mid_block.resnets.1.time_emb_proj.weight" in state_dict:
            # For controlnets in diffusers format
            return self.from_diffusers(state_dict)
        rename_dict = {
            "control_model.time_embed.0.weight": "time_embedding.0.weight",
            "control_model.time_embed.0.bias": "time_embedding.0.bias",
            "control_model.time_embed.2.weight": "time_embedding.2.weight",
            "control_model.time_embed.2.bias": "time_embedding.2.bias",
            "control_model.input_blocks.0.0.weight": "conv_in.weight",
            "control_model.input_blocks.0.0.bias": "conv_in.bias",
            "control_model.input_blocks.1.0.in_layers.0.weight": "blocks.0.norm1.weight",
            "control_model.input_blocks.1.0.in_layers.0.bias": "blocks.0.norm1.bias",
            "control_model.input_blocks.1.0.in_layers.2.weight": "blocks.0.conv1.weight",
            "control_model.input_blocks.1.0.in_layers.2.bias": "blocks.0.conv1.bias",
            "control_model.input_blocks.1.0.emb_layers.1.weight": "blocks.0.time_emb_proj.weight",
            "control_model.input_blocks.1.0.emb_layers.1.bias": "blocks.0.time_emb_proj.bias",
            "control_model.input_blocks.1.0.out_layers.0.weight": "blocks.0.norm2.weight",
            "control_model.input_blocks.1.0.out_layers.0.bias": "blocks.0.norm2.bias",
            "control_model.input_blocks.1.0.out_layers.3.weight": "blocks.0.conv2.weight",
            "control_model.input_blocks.1.0.out_layers.3.bias": "blocks.0.conv2.bias",
            "control_model.input_blocks.1.1.norm.weight": "blocks.1.norm.weight",
            "control_model.input_blocks.1.1.norm.bias": "blocks.1.norm.bias",
            "control_model.input_blocks.1.1.proj_in.weight": "blocks.1.proj_in.weight",
            "control_model.input_blocks.1.1.proj_in.bias": "blocks.1.proj_in.bias",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q.weight": "blocks.1.transformer_blocks.0.attn1.to_q.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k.weight": "blocks.1.transformer_blocks.0.attn1.to_k.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v.weight": "blocks.1.transformer_blocks.0.attn1.to_v.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.1.transformer_blocks.0.attn1.to_out.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.1.transformer_blocks.0.attn1.to_out.bias",
            "control_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.1.transformer_blocks.0.act_fn.proj.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.1.transformer_blocks.0.act_fn.proj.bias",
            "control_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight": "blocks.1.transformer_blocks.0.ff.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias": "blocks.1.transformer_blocks.0.ff.bias",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight": "blocks.1.transformer_blocks.0.attn2.to_q.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight": "blocks.1.transformer_blocks.0.attn2.to_k.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight": "blocks.1.transformer_blocks.0.attn2.to_v.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.1.transformer_blocks.0.attn2.to_out.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.1.transformer_blocks.0.attn2.to_out.bias",
            "control_model.input_blocks.1.1.transformer_blocks.0.norm1.weight": "blocks.1.transformer_blocks.0.norm1.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.norm1.bias": "blocks.1.transformer_blocks.0.norm1.bias",
            "control_model.input_blocks.1.1.transformer_blocks.0.norm2.weight": "blocks.1.transformer_blocks.0.norm2.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.norm2.bias": "blocks.1.transformer_blocks.0.norm2.bias",
            "control_model.input_blocks.1.1.transformer_blocks.0.norm3.weight": "blocks.1.transformer_blocks.0.norm3.weight",
            "control_model.input_blocks.1.1.transformer_blocks.0.norm3.bias": "blocks.1.transformer_blocks.0.norm3.bias",
            "control_model.input_blocks.1.1.proj_out.weight": "blocks.1.proj_out.weight",
            "control_model.input_blocks.1.1.proj_out.bias": "blocks.1.proj_out.bias",
            "control_model.input_blocks.2.0.in_layers.0.weight": "blocks.3.norm1.weight",
            "control_model.input_blocks.2.0.in_layers.0.bias": "blocks.3.norm1.bias",
            "control_model.input_blocks.2.0.in_layers.2.weight": "blocks.3.conv1.weight",
            "control_model.input_blocks.2.0.in_layers.2.bias": "blocks.3.conv1.bias",
            "control_model.input_blocks.2.0.emb_layers.1.weight": "blocks.3.time_emb_proj.weight",
            "control_model.input_blocks.2.0.emb_layers.1.bias": "blocks.3.time_emb_proj.bias",
            "control_model.input_blocks.2.0.out_layers.0.weight": "blocks.3.norm2.weight",
            "control_model.input_blocks.2.0.out_layers.0.bias": "blocks.3.norm2.bias",
            "control_model.input_blocks.2.0.out_layers.3.weight": "blocks.3.conv2.weight",
            "control_model.input_blocks.2.0.out_layers.3.bias": "blocks.3.conv2.bias",
            "control_model.input_blocks.2.1.norm.weight": "blocks.4.norm.weight",
            "control_model.input_blocks.2.1.norm.bias": "blocks.4.norm.bias",
            "control_model.input_blocks.2.1.proj_in.weight": "blocks.4.proj_in.weight",
            "control_model.input_blocks.2.1.proj_in.bias": "blocks.4.proj_in.bias",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q.weight": "blocks.4.transformer_blocks.0.attn1.to_q.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k.weight": "blocks.4.transformer_blocks.0.attn1.to_k.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v.weight": "blocks.4.transformer_blocks.0.attn1.to_v.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.4.transformer_blocks.0.attn1.to_out.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.4.transformer_blocks.0.attn1.to_out.bias",
            "control_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.4.transformer_blocks.0.act_fn.proj.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.4.transformer_blocks.0.act_fn.proj.bias",
            "control_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight": "blocks.4.transformer_blocks.0.ff.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias": "blocks.4.transformer_blocks.0.ff.bias",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight": "blocks.4.transformer_blocks.0.attn2.to_q.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight": "blocks.4.transformer_blocks.0.attn2.to_k.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight": "blocks.4.transformer_blocks.0.attn2.to_v.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.4.transformer_blocks.0.attn2.to_out.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.4.transformer_blocks.0.attn2.to_out.bias",
            "control_model.input_blocks.2.1.transformer_blocks.0.norm1.weight": "blocks.4.transformer_blocks.0.norm1.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.norm1.bias": "blocks.4.transformer_blocks.0.norm1.bias",
            "control_model.input_blocks.2.1.transformer_blocks.0.norm2.weight": "blocks.4.transformer_blocks.0.norm2.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.norm2.bias": "blocks.4.transformer_blocks.0.norm2.bias",
            "control_model.input_blocks.2.1.transformer_blocks.0.norm3.weight": "blocks.4.transformer_blocks.0.norm3.weight",
            "control_model.input_blocks.2.1.transformer_blocks.0.norm3.bias": "blocks.4.transformer_blocks.0.norm3.bias",
            "control_model.input_blocks.2.1.proj_out.weight": "blocks.4.proj_out.weight",
            "control_model.input_blocks.2.1.proj_out.bias": "blocks.4.proj_out.bias",
            "control_model.input_blocks.3.0.op.weight": "blocks.6.conv.weight",
            "control_model.input_blocks.3.0.op.bias": "blocks.6.conv.bias",
            "control_model.input_blocks.4.0.in_layers.0.weight": "blocks.8.norm1.weight",
            "control_model.input_blocks.4.0.in_layers.0.bias": "blocks.8.norm1.bias",
            "control_model.input_blocks.4.0.in_layers.2.weight": "blocks.8.conv1.weight",
            "control_model.input_blocks.4.0.in_layers.2.bias": "blocks.8.conv1.bias",
            "control_model.input_blocks.4.0.emb_layers.1.weight": "blocks.8.time_emb_proj.weight",
            "control_model.input_blocks.4.0.emb_layers.1.bias": "blocks.8.time_emb_proj.bias",
            "control_model.input_blocks.4.0.out_layers.0.weight": "blocks.8.norm2.weight",
            "control_model.input_blocks.4.0.out_layers.0.bias": "blocks.8.norm2.bias",
            "control_model.input_blocks.4.0.out_layers.3.weight": "blocks.8.conv2.weight",
            "control_model.input_blocks.4.0.out_layers.3.bias": "blocks.8.conv2.bias",
            "control_model.input_blocks.4.0.skip_connection.weight": "blocks.8.conv_shortcut.weight",
            "control_model.input_blocks.4.0.skip_connection.bias": "blocks.8.conv_shortcut.bias",
            "control_model.input_blocks.4.1.norm.weight": "blocks.9.norm.weight",
            "control_model.input_blocks.4.1.norm.bias": "blocks.9.norm.bias",
            "control_model.input_blocks.4.1.proj_in.weight": "blocks.9.proj_in.weight",
            "control_model.input_blocks.4.1.proj_in.bias": "blocks.9.proj_in.bias",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.9.transformer_blocks.0.attn1.to_q.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.9.transformer_blocks.0.attn1.to_k.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.9.transformer_blocks.0.attn1.to_v.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.9.transformer_blocks.0.attn1.to_out.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.9.transformer_blocks.0.attn1.to_out.bias",
            "control_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.9.transformer_blocks.0.act_fn.proj.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.9.transformer_blocks.0.act_fn.proj.bias",
            "control_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.9.transformer_blocks.0.ff.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.9.transformer_blocks.0.ff.bias",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.9.transformer_blocks.0.attn2.to_q.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.9.transformer_blocks.0.attn2.to_k.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.9.transformer_blocks.0.attn2.to_v.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.9.transformer_blocks.0.attn2.to_out.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.9.transformer_blocks.0.attn2.to_out.bias",
            "control_model.input_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.9.transformer_blocks.0.norm1.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.9.transformer_blocks.0.norm1.bias",
            "control_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.9.transformer_blocks.0.norm2.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.9.transformer_blocks.0.norm2.bias",
            "control_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.9.transformer_blocks.0.norm3.weight",
            "control_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.9.transformer_blocks.0.norm3.bias",
            "control_model.input_blocks.4.1.proj_out.weight": "blocks.9.proj_out.weight",
            "control_model.input_blocks.4.1.proj_out.bias": "blocks.9.proj_out.bias",
            "control_model.input_blocks.5.0.in_layers.0.weight": "blocks.11.norm1.weight",
            "control_model.input_blocks.5.0.in_layers.0.bias": "blocks.11.norm1.bias",
            "control_model.input_blocks.5.0.in_layers.2.weight": "blocks.11.conv1.weight",
            "control_model.input_blocks.5.0.in_layers.2.bias": "blocks.11.conv1.bias",
            "control_model.input_blocks.5.0.emb_layers.1.weight": "blocks.11.time_emb_proj.weight",
            "control_model.input_blocks.5.0.emb_layers.1.bias": "blocks.11.time_emb_proj.bias",
            "control_model.input_blocks.5.0.out_layers.0.weight": "blocks.11.norm2.weight",
            "control_model.input_blocks.5.0.out_layers.0.bias": "blocks.11.norm2.bias",
            "control_model.input_blocks.5.0.out_layers.3.weight": "blocks.11.conv2.weight",
            "control_model.input_blocks.5.0.out_layers.3.bias": "blocks.11.conv2.bias",
            "control_model.input_blocks.5.1.norm.weight": "blocks.12.norm.weight",
            "control_model.input_blocks.5.1.norm.bias": "blocks.12.norm.bias",
            "control_model.input_blocks.5.1.proj_in.weight": "blocks.12.proj_in.weight",
            "control_model.input_blocks.5.1.proj_in.bias": "blocks.12.proj_in.bias",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.12.transformer_blocks.0.attn1.to_q.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.12.transformer_blocks.0.attn1.to_k.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.12.transformer_blocks.0.attn1.to_v.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.12.transformer_blocks.0.attn1.to_out.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.12.transformer_blocks.0.attn1.to_out.bias",
            "control_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.12.transformer_blocks.0.act_fn.proj.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.12.transformer_blocks.0.act_fn.proj.bias",
            "control_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.12.transformer_blocks.0.ff.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.12.transformer_blocks.0.ff.bias",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.12.transformer_blocks.0.attn2.to_q.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.12.transformer_blocks.0.attn2.to_k.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.12.transformer_blocks.0.attn2.to_v.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.12.transformer_blocks.0.attn2.to_out.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.12.transformer_blocks.0.attn2.to_out.bias",
            "control_model.input_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.12.transformer_blocks.0.norm1.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.12.transformer_blocks.0.norm1.bias",
            "control_model.input_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.12.transformer_blocks.0.norm2.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.12.transformer_blocks.0.norm2.bias",
            "control_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.12.transformer_blocks.0.norm3.weight",
            "control_model.input_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.12.transformer_blocks.0.norm3.bias",
            "control_model.input_blocks.5.1.proj_out.weight": "blocks.12.proj_out.weight",
            "control_model.input_blocks.5.1.proj_out.bias": "blocks.12.proj_out.bias",
            "control_model.input_blocks.6.0.op.weight": "blocks.14.conv.weight",
            "control_model.input_blocks.6.0.op.bias": "blocks.14.conv.bias",
            "control_model.input_blocks.7.0.in_layers.0.weight": "blocks.16.norm1.weight",
            "control_model.input_blocks.7.0.in_layers.0.bias": "blocks.16.norm1.bias",
            "control_model.input_blocks.7.0.in_layers.2.weight": "blocks.16.conv1.weight",
            "control_model.input_blocks.7.0.in_layers.2.bias": "blocks.16.conv1.bias",
            "control_model.input_blocks.7.0.emb_layers.1.weight": "blocks.16.time_emb_proj.weight",
            "control_model.input_blocks.7.0.emb_layers.1.bias": "blocks.16.time_emb_proj.bias",
            "control_model.input_blocks.7.0.out_layers.0.weight": "blocks.16.norm2.weight",
            "control_model.input_blocks.7.0.out_layers.0.bias": "blocks.16.norm2.bias",
            "control_model.input_blocks.7.0.out_layers.3.weight": "blocks.16.conv2.weight",
            "control_model.input_blocks.7.0.out_layers.3.bias": "blocks.16.conv2.bias",
            "control_model.input_blocks.7.0.skip_connection.weight": "blocks.16.conv_shortcut.weight",
            "control_model.input_blocks.7.0.skip_connection.bias": "blocks.16.conv_shortcut.bias",
            "control_model.input_blocks.7.1.norm.weight": "blocks.17.norm.weight",
            "control_model.input_blocks.7.1.norm.bias": "blocks.17.norm.bias",
            "control_model.input_blocks.7.1.proj_in.weight": "blocks.17.proj_in.weight",
            "control_model.input_blocks.7.1.proj_in.bias": "blocks.17.proj_in.bias",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.17.transformer_blocks.0.attn1.to_q.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.17.transformer_blocks.0.attn1.to_k.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.17.transformer_blocks.0.attn1.to_v.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.17.transformer_blocks.0.attn1.to_out.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.17.transformer_blocks.0.attn1.to_out.bias",
            "control_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.17.transformer_blocks.0.act_fn.proj.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.17.transformer_blocks.0.act_fn.proj.bias",
            "control_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.17.transformer_blocks.0.ff.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.17.transformer_blocks.0.ff.bias",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.17.transformer_blocks.0.attn2.to_q.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.17.transformer_blocks.0.attn2.to_k.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.17.transformer_blocks.0.attn2.to_v.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.17.transformer_blocks.0.attn2.to_out.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.17.transformer_blocks.0.attn2.to_out.bias",
            "control_model.input_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.17.transformer_blocks.0.norm1.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.17.transformer_blocks.0.norm1.bias",
            "control_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.17.transformer_blocks.0.norm2.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.17.transformer_blocks.0.norm2.bias",
            "control_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.17.transformer_blocks.0.norm3.weight",
            "control_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.17.transformer_blocks.0.norm3.bias",
            "control_model.input_blocks.7.1.proj_out.weight": "blocks.17.proj_out.weight",
            "control_model.input_blocks.7.1.proj_out.bias": "blocks.17.proj_out.bias",
            "control_model.input_blocks.8.0.in_layers.0.weight": "blocks.19.norm1.weight",
            "control_model.input_blocks.8.0.in_layers.0.bias": "blocks.19.norm1.bias",
            "control_model.input_blocks.8.0.in_layers.2.weight": "blocks.19.conv1.weight",
            "control_model.input_blocks.8.0.in_layers.2.bias": "blocks.19.conv1.bias",
            "control_model.input_blocks.8.0.emb_layers.1.weight": "blocks.19.time_emb_proj.weight",
            "control_model.input_blocks.8.0.emb_layers.1.bias": "blocks.19.time_emb_proj.bias",
            "control_model.input_blocks.8.0.out_layers.0.weight": "blocks.19.norm2.weight",
            "control_model.input_blocks.8.0.out_layers.0.bias": "blocks.19.norm2.bias",
            "control_model.input_blocks.8.0.out_layers.3.weight": "blocks.19.conv2.weight",
            "control_model.input_blocks.8.0.out_layers.3.bias": "blocks.19.conv2.bias",
            "control_model.input_blocks.8.1.norm.weight": "blocks.20.norm.weight",
            "control_model.input_blocks.8.1.norm.bias": "blocks.20.norm.bias",
            "control_model.input_blocks.8.1.proj_in.weight": "blocks.20.proj_in.weight",
            "control_model.input_blocks.8.1.proj_in.bias": "blocks.20.proj_in.bias",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.20.transformer_blocks.0.attn1.to_q.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.20.transformer_blocks.0.attn1.to_k.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.20.transformer_blocks.0.attn1.to_v.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.20.transformer_blocks.0.attn1.to_out.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.20.transformer_blocks.0.attn1.to_out.bias",
            "control_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.20.transformer_blocks.0.act_fn.proj.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.20.transformer_blocks.0.act_fn.proj.bias",
            "control_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.20.transformer_blocks.0.ff.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.20.transformer_blocks.0.ff.bias",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.20.transformer_blocks.0.attn2.to_q.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.20.transformer_blocks.0.attn2.to_k.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.20.transformer_blocks.0.attn2.to_v.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.20.transformer_blocks.0.attn2.to_out.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.20.transformer_blocks.0.attn2.to_out.bias",
            "control_model.input_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.20.transformer_blocks.0.norm1.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.20.transformer_blocks.0.norm1.bias",
            "control_model.input_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.20.transformer_blocks.0.norm2.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.20.transformer_blocks.0.norm2.bias",
            "control_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.20.transformer_blocks.0.norm3.weight",
            "control_model.input_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.20.transformer_blocks.0.norm3.bias",
            "control_model.input_blocks.8.1.proj_out.weight": "blocks.20.proj_out.weight",
            "control_model.input_blocks.8.1.proj_out.bias": "blocks.20.proj_out.bias",
            "control_model.input_blocks.9.0.op.weight": "blocks.22.conv.weight",
            "control_model.input_blocks.9.0.op.bias": "blocks.22.conv.bias",
            "control_model.input_blocks.10.0.in_layers.0.weight": "blocks.24.norm1.weight",
            "control_model.input_blocks.10.0.in_layers.0.bias": "blocks.24.norm1.bias",
            "control_model.input_blocks.10.0.in_layers.2.weight": "blocks.24.conv1.weight",
            "control_model.input_blocks.10.0.in_layers.2.bias": "blocks.24.conv1.bias",
            "control_model.input_blocks.10.0.emb_layers.1.weight": "blocks.24.time_emb_proj.weight",
            "control_model.input_blocks.10.0.emb_layers.1.bias": "blocks.24.time_emb_proj.bias",
            "control_model.input_blocks.10.0.out_layers.0.weight": "blocks.24.norm2.weight",
            "control_model.input_blocks.10.0.out_layers.0.bias": "blocks.24.norm2.bias",
            "control_model.input_blocks.10.0.out_layers.3.weight": "blocks.24.conv2.weight",
            "control_model.input_blocks.10.0.out_layers.3.bias": "blocks.24.conv2.bias",
            "control_model.input_blocks.11.0.in_layers.0.weight": "blocks.26.norm1.weight",
            "control_model.input_blocks.11.0.in_layers.0.bias": "blocks.26.norm1.bias",
            "control_model.input_blocks.11.0.in_layers.2.weight": "blocks.26.conv1.weight",
            "control_model.input_blocks.11.0.in_layers.2.bias": "blocks.26.conv1.bias",
            "control_model.input_blocks.11.0.emb_layers.1.weight": "blocks.26.time_emb_proj.weight",
            "control_model.input_blocks.11.0.emb_layers.1.bias": "blocks.26.time_emb_proj.bias",
            "control_model.input_blocks.11.0.out_layers.0.weight": "blocks.26.norm2.weight",
            "control_model.input_blocks.11.0.out_layers.0.bias": "blocks.26.norm2.bias",
            "control_model.input_blocks.11.0.out_layers.3.weight": "blocks.26.conv2.weight",
            "control_model.input_blocks.11.0.out_layers.3.bias": "blocks.26.conv2.bias",
            "control_model.zero_convs.0.0.weight": "controlnet_blocks.0.weight",
            "control_model.zero_convs.0.0.bias": "controlnet_blocks.0.bias",
            "control_model.zero_convs.1.0.weight": "controlnet_blocks.1.weight",
            "control_model.zero_convs.1.0.bias": "controlnet_blocks.0.bias",
            "control_model.zero_convs.2.0.weight": "controlnet_blocks.2.weight",
            "control_model.zero_convs.2.0.bias": "controlnet_blocks.0.bias",
            "control_model.zero_convs.3.0.weight": "controlnet_blocks.3.weight",
            "control_model.zero_convs.3.0.bias": "controlnet_blocks.0.bias",
            "control_model.zero_convs.4.0.weight": "controlnet_blocks.4.weight",
            "control_model.zero_convs.4.0.bias": "controlnet_blocks.4.bias",
            "control_model.zero_convs.5.0.weight": "controlnet_blocks.5.weight",
            "control_model.zero_convs.5.0.bias": "controlnet_blocks.4.bias",
            "control_model.zero_convs.6.0.weight": "controlnet_blocks.6.weight",
            "control_model.zero_convs.6.0.bias": "controlnet_blocks.4.bias",
            "control_model.zero_convs.7.0.weight": "controlnet_blocks.7.weight",
            "control_model.zero_convs.7.0.bias": "controlnet_blocks.7.bias",
            "control_model.zero_convs.8.0.weight": "controlnet_blocks.8.weight",
            "control_model.zero_convs.8.0.bias": "controlnet_blocks.7.bias",
            "control_model.zero_convs.9.0.weight": "controlnet_blocks.9.weight",
            "control_model.zero_convs.9.0.bias": "controlnet_blocks.7.bias",
            "control_model.zero_convs.10.0.weight": "controlnet_blocks.10.weight",
            "control_model.zero_convs.10.0.bias": "controlnet_blocks.7.bias",
            "control_model.zero_convs.11.0.weight": "controlnet_blocks.11.weight",
            "control_model.zero_convs.11.0.bias": "controlnet_blocks.7.bias",
            "control_model.input_hint_block.0.weight": "controlnet_conv_in.blocks.0.weight",
            "control_model.input_hint_block.0.bias": "controlnet_conv_in.blocks.0.bias",
            "control_model.input_hint_block.2.weight": "controlnet_conv_in.blocks.2.weight",
            "control_model.input_hint_block.2.bias": "controlnet_conv_in.blocks.2.bias",
            "control_model.input_hint_block.4.weight": "controlnet_conv_in.blocks.4.weight",
            "control_model.input_hint_block.4.bias": "controlnet_conv_in.blocks.4.bias",
            "control_model.input_hint_block.6.weight": "controlnet_conv_in.blocks.6.weight",
            "control_model.input_hint_block.6.bias": "controlnet_conv_in.blocks.6.bias",
            "control_model.input_hint_block.8.weight": "controlnet_conv_in.blocks.8.weight",
            "control_model.input_hint_block.8.bias": "controlnet_conv_in.blocks.8.bias",
            "control_model.input_hint_block.10.weight": "controlnet_conv_in.blocks.10.weight",
            "control_model.input_hint_block.10.bias": "controlnet_conv_in.blocks.10.bias",
            "control_model.input_hint_block.12.weight": "controlnet_conv_in.blocks.12.weight",
            "control_model.input_hint_block.12.bias": "controlnet_conv_in.blocks.12.bias",
            "control_model.input_hint_block.14.weight": "controlnet_conv_in.blocks.14.weight",
            "control_model.input_hint_block.14.bias": "controlnet_conv_in.blocks.14.bias",
            "control_model.middle_block.0.in_layers.0.weight": "blocks.28.norm1.weight",
            "control_model.middle_block.0.in_layers.0.bias": "blocks.28.norm1.bias",
            "control_model.middle_block.0.in_layers.2.weight": "blocks.28.conv1.weight",
            "control_model.middle_block.0.in_layers.2.bias": "blocks.28.conv1.bias",
            "control_model.middle_block.0.emb_layers.1.weight": "blocks.28.time_emb_proj.weight",
            "control_model.middle_block.0.emb_layers.1.bias": "blocks.28.time_emb_proj.bias",
            "control_model.middle_block.0.out_layers.0.weight": "blocks.28.norm2.weight",
            "control_model.middle_block.0.out_layers.0.bias": "blocks.28.norm2.bias",
            "control_model.middle_block.0.out_layers.3.weight": "blocks.28.conv2.weight",
            "control_model.middle_block.0.out_layers.3.bias": "blocks.28.conv2.bias",
            "control_model.middle_block.1.norm.weight": "blocks.29.norm.weight",
            "control_model.middle_block.1.norm.bias": "blocks.29.norm.bias",
            "control_model.middle_block.1.proj_in.weight": "blocks.29.proj_in.weight",
            "control_model.middle_block.1.proj_in.bias": "blocks.29.proj_in.bias",
            "control_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight": "blocks.29.transformer_blocks.0.attn1.to_q.weight",
            "control_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight": "blocks.29.transformer_blocks.0.attn1.to_k.weight",
            "control_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight": "blocks.29.transformer_blocks.0.attn1.to_v.weight",
            "control_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.29.transformer_blocks.0.attn1.to_out.weight",
            "control_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.29.transformer_blocks.0.attn1.to_out.bias",
            "control_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.29.transformer_blocks.0.act_fn.proj.weight",
            "control_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.29.transformer_blocks.0.act_fn.proj.bias",
            "control_model.middle_block.1.transformer_blocks.0.ff.net.2.weight": "blocks.29.transformer_blocks.0.ff.weight",
            "control_model.middle_block.1.transformer_blocks.0.ff.net.2.bias": "blocks.29.transformer_blocks.0.ff.bias",
            "control_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight": "blocks.29.transformer_blocks.0.attn2.to_q.weight",
            "control_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight": "blocks.29.transformer_blocks.0.attn2.to_k.weight",
            "control_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight": "blocks.29.transformer_blocks.0.attn2.to_v.weight",
            "control_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.29.transformer_blocks.0.attn2.to_out.weight",
            "control_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.29.transformer_blocks.0.attn2.to_out.bias",
            "control_model.middle_block.1.transformer_blocks.0.norm1.weight": "blocks.29.transformer_blocks.0.norm1.weight",
            "control_model.middle_block.1.transformer_blocks.0.norm1.bias": "blocks.29.transformer_blocks.0.norm1.bias",
            "control_model.middle_block.1.transformer_blocks.0.norm2.weight": "blocks.29.transformer_blocks.0.norm2.weight",
            "control_model.middle_block.1.transformer_blocks.0.norm2.bias": "blocks.29.transformer_blocks.0.norm2.bias",
            "control_model.middle_block.1.transformer_blocks.0.norm3.weight": "blocks.29.transformer_blocks.0.norm3.weight",
            "control_model.middle_block.1.transformer_blocks.0.norm3.bias": "blocks.29.transformer_blocks.0.norm3.bias",
            "control_model.middle_block.1.proj_out.weight": "blocks.29.proj_out.weight",
            "control_model.middle_block.1.proj_out.bias": "blocks.29.proj_out.bias",
            "control_model.middle_block.2.in_layers.0.weight": "blocks.30.norm1.weight",
            "control_model.middle_block.2.in_layers.0.bias": "blocks.30.norm1.bias",
            "control_model.middle_block.2.in_layers.2.weight": "blocks.30.conv1.weight",
            "control_model.middle_block.2.in_layers.2.bias": "blocks.30.conv1.bias",
            "control_model.middle_block.2.emb_layers.1.weight": "blocks.30.time_emb_proj.weight",
            "control_model.middle_block.2.emb_layers.1.bias": "blocks.30.time_emb_proj.bias",
            "control_model.middle_block.2.out_layers.0.weight": "blocks.30.norm2.weight",
            "control_model.middle_block.2.out_layers.0.bias": "blocks.30.norm2.bias",
            "control_model.middle_block.2.out_layers.3.weight": "blocks.30.conv2.weight",
            "control_model.middle_block.2.out_layers.3.bias": "blocks.30.conv2.bias",
            "control_model.middle_block_out.0.weight": "controlnet_blocks.12.weight",
            "control_model.middle_block_out.0.bias": "controlnet_blocks.7.bias",
        }
        state_dict_ = {}
        for name in state_dict:
            if name in rename_dict:
                param = state_dict[name]
                if ".proj_in." in name or ".proj_out." in name:
                    param = param.squeeze()
                state_dict_[rename_dict[name]] = param
        return state_dict_