Spaces:
Runtime error
Runtime error
File size: 39,623 Bytes
fb4fac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
import torch, os, json
from safetensors import safe_open
from typing_extensions import Literal, TypeAlias
from typing import List
from .downloader import download_from_huggingface, download_from_modelscope
from .sd_text_encoder import SDTextEncoder
from .sd_unet import SDUNet
from .sd_vae_encoder import SDVAEEncoder
from .sd_vae_decoder import SDVAEDecoder
from .sd_lora import SDLoRA
from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
from .sdxl_unet import SDXLUNet
from .sdxl_vae_decoder import SDXLVAEDecoder
from .sdxl_vae_encoder import SDXLVAEEncoder
from .sd3_text_encoder import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3
from .sd3_dit import SD3DiT
from .sd3_vae_decoder import SD3VAEDecoder
from .sd3_vae_encoder import SD3VAEEncoder
from .sd_controlnet import SDControlNet
from .sd_motion import SDMotionModel
from .sdxl_motion import SDXLMotionModel
from .svd_image_encoder import SVDImageEncoder
from .svd_unet import SVDUNet
from .svd_vae_decoder import SVDVAEDecoder
from .svd_vae_encoder import SVDVAEEncoder
from .sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder
from .sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder
from .hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
from .hunyuan_dit import HunyuanDiT
from .kolors_text_encoder import ChatGLMModel
preset_models_on_huggingface = {
"HunyuanDiT": [
("Tencent-Hunyuan/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"),
("Tencent-Hunyuan/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"),
("Tencent-Hunyuan/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"),
("Tencent-Hunyuan/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"),
],
"stable-video-diffusion-img2vid-xt": [
("stabilityai/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"),
],
"ExVideo-SVD-128f-v1": [
("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"),
],
}
preset_models_on_modelscope = {
# Hunyuan DiT
"HunyuanDiT": [
("modelscope/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"),
("modelscope/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"),
("modelscope/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"),
("modelscope/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"),
],
# Stable Video Diffusion
"stable-video-diffusion-img2vid-xt": [
("AI-ModelScope/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"),
],
# ExVideo
"ExVideo-SVD-128f-v1": [
("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"),
],
# Stable Diffusion
"StableDiffusion_v15": [
("AI-ModelScope/stable-diffusion-v1-5", "v1-5-pruned-emaonly.safetensors", "models/stable_diffusion"),
],
"DreamShaper_8": [
("sd_lora/dreamshaper_8", "dreamshaper_8.safetensors", "models/stable_diffusion"),
],
"AingDiffusion_v12": [
("sd_lora/aingdiffusion_v12", "aingdiffusion_v12.safetensors", "models/stable_diffusion"),
],
"Flat2DAnimerge_v45Sharp": [
("sd_lora/Flat-2D-Animerge", "flat2DAnimerge_v45Sharp.safetensors", "models/stable_diffusion"),
],
# Textual Inversion
"TextualInversion_VeryBadImageNegative_v1.3": [
("sd_lora/verybadimagenegative_v1.3", "verybadimagenegative_v1.3.pt", "models/textual_inversion"),
],
# Stable Diffusion XL
"StableDiffusionXL_v1": [
("AI-ModelScope/stable-diffusion-xl-base-1.0", "sd_xl_base_1.0.safetensors", "models/stable_diffusion_xl"),
],
"BluePencilXL_v200": [
("sd_lora/bluePencilXL_v200", "bluePencilXL_v200.safetensors", "models/stable_diffusion_xl"),
],
"StableDiffusionXL_Turbo": [
("AI-ModelScope/sdxl-turbo", "sd_xl_turbo_1.0_fp16.safetensors", "models/stable_diffusion_xl_turbo"),
],
# Stable Diffusion 3
"StableDiffusion3": [
("AI-ModelScope/stable-diffusion-3-medium", "sd3_medium_incl_clips_t5xxlfp16.safetensors", "models/stable_diffusion_3"),
],
"StableDiffusion3_without_T5": [
("AI-ModelScope/stable-diffusion-3-medium", "sd3_medium_incl_clips.safetensors", "models/stable_diffusion_3"),
],
# ControlNet
"ControlNet_v11f1p_sd15_depth": [
("AI-ModelScope/ControlNet-v1-1", "control_v11f1p_sd15_depth.pth", "models/ControlNet"),
("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators")
],
"ControlNet_v11p_sd15_softedge": [
("AI-ModelScope/ControlNet-v1-1", "control_v11p_sd15_softedge.pth", "models/ControlNet"),
("sd_lora/Annotators", "ControlNetHED.pth", "models/Annotators")
],
"ControlNet_v11f1e_sd15_tile": [
("AI-ModelScope/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet")
],
"ControlNet_v11p_sd15_lineart": [
("AI-ModelScope/ControlNet-v1-1", "control_v11p_sd15_lineart.pth", "models/ControlNet"),
("sd_lora/Annotators", "sk_model.pth", "models/Annotators"),
("sd_lora/Annotators", "sk_model2.pth", "models/Annotators")
],
# AnimateDiff
"AnimateDiff_v2": [
("Shanghai_AI_Laboratory/animatediff", "mm_sd_v15_v2.ckpt", "models/AnimateDiff"),
],
"AnimateDiff_xl_beta": [
("Shanghai_AI_Laboratory/animatediff", "mm_sdxl_v10_beta.ckpt", "models/AnimateDiff"),
],
# RIFE
"RIFE": [
("Damo_XR_Lab/cv_rife_video-frame-interpolation", "flownet.pkl", "models/RIFE"),
],
# Beautiful Prompt
"BeautifulPrompt": [
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "generation_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "model.safetensors", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "special_tokens_map.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "tokenizer.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "tokenizer_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
],
# Translator
"opus-mt-zh-en": [
("moxying/opus-mt-zh-en", "config.json", "models/translator/opus-mt-zh-en"),
("moxying/opus-mt-zh-en", "generation_config.json", "models/translator/opus-mt-zh-en"),
("moxying/opus-mt-zh-en", "metadata.json", "models/translator/opus-mt-zh-en"),
("moxying/opus-mt-zh-en", "pytorch_model.bin", "models/translator/opus-mt-zh-en"),
("moxying/opus-mt-zh-en", "source.spm", "models/translator/opus-mt-zh-en"),
("moxying/opus-mt-zh-en", "target.spm", "models/translator/opus-mt-zh-en"),
("moxying/opus-mt-zh-en", "tokenizer_config.json", "models/translator/opus-mt-zh-en"),
("moxying/opus-mt-zh-en", "vocab.json", "models/translator/opus-mt-zh-en"),
],
# IP-Adapter
"IP-Adapter-SD": [
("AI-ModelScope/IP-Adapter", "models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion/image_encoder"),
("AI-ModelScope/IP-Adapter", "models/ip-adapter_sd15.bin", "models/IpAdapter/stable_diffusion"),
],
"IP-Adapter-SDXL": [
("AI-ModelScope/IP-Adapter", "sdxl_models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion_xl/image_encoder"),
("AI-ModelScope/IP-Adapter", "sdxl_models/ip-adapter_sdxl.bin", "models/IpAdapter/stable_diffusion_xl"),
],
# Kolors
"Kolors": [
("Kwai-Kolors/Kolors", "text_encoder/config.json", "models/kolors/Kolors/text_encoder"),
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model.bin.index.json", "models/kolors/Kolors/text_encoder"),
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00001-of-00007.bin", "models/kolors/Kolors/text_encoder"),
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00002-of-00007.bin", "models/kolors/Kolors/text_encoder"),
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00003-of-00007.bin", "models/kolors/Kolors/text_encoder"),
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00004-of-00007.bin", "models/kolors/Kolors/text_encoder"),
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00005-of-00007.bin", "models/kolors/Kolors/text_encoder"),
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00006-of-00007.bin", "models/kolors/Kolors/text_encoder"),
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00007-of-00007.bin", "models/kolors/Kolors/text_encoder"),
("Kwai-Kolors/Kolors", "unet/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/unet"),
("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/vae"),
],
"SDXL-vae-fp16-fix": [
("AI-ModelScope/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors", "models/sdxl-vae-fp16-fix")
],
}
Preset_model_id: TypeAlias = Literal[
"HunyuanDiT",
"stable-video-diffusion-img2vid-xt",
"ExVideo-SVD-128f-v1",
"StableDiffusion_v15",
"DreamShaper_8",
"AingDiffusion_v12",
"Flat2DAnimerge_v45Sharp",
"TextualInversion_VeryBadImageNegative_v1.3",
"StableDiffusionXL_v1",
"BluePencilXL_v200",
"StableDiffusionXL_Turbo",
"ControlNet_v11f1p_sd15_depth",
"ControlNet_v11p_sd15_softedge",
"ControlNet_v11f1e_sd15_tile",
"ControlNet_v11p_sd15_lineart",
"AnimateDiff_v2",
"AnimateDiff_xl_beta",
"RIFE",
"BeautifulPrompt",
"opus-mt-zh-en",
"IP-Adapter-SD",
"IP-Adapter-SDXL",
"StableDiffusion3",
"StableDiffusion3_without_T5",
"Kolors",
"SDXL-vae-fp16-fix",
]
Preset_model_website: TypeAlias = Literal[
"HuggingFace",
"ModelScope",
]
website_to_preset_models = {
"HuggingFace": preset_models_on_huggingface,
"ModelScope": preset_models_on_modelscope,
}
website_to_download_fn = {
"HuggingFace": download_from_huggingface,
"ModelScope": download_from_modelscope,
}
def download_models(
model_id_list: List[Preset_model_id] = [],
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
):
downloaded_files = []
for model_id in model_id_list:
for website in downloading_priority:
if model_id in website_to_preset_models[website]:
for model_id, origin_file_path, local_dir in website_to_preset_models[website][model_id]:
# Check if the file is downloaded.
file_to_download = os.path.join(local_dir, os.path.basename(origin_file_path))
if file_to_download in downloaded_files:
continue
# Download
website_to_download_fn[website](model_id, origin_file_path, local_dir)
if os.path.basename(origin_file_path) in os.listdir(local_dir):
downloaded_files.append(file_to_download)
return downloaded_files
class ModelManager:
def __init__(
self,
torch_dtype=torch.float16,
device="cuda",
model_id_list: List[Preset_model_id] = [],
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
file_path_list: List[str] = [],
):
self.torch_dtype = torch_dtype
self.device = device
self.model = {}
self.model_path = {}
self.textual_inversion_dict = {}
downloaded_files = download_models(model_id_list, downloading_priority)
self.load_models(downloaded_files + file_path_list)
def load_model_from_origin(
self,
download_from: Preset_model_website = "ModelScope",
model_id = "",
origin_file_path = "",
local_dir = ""
):
website_to_download_fn[download_from](model_id, origin_file_path, local_dir)
file_to_download = os.path.join(local_dir, os.path.basename(origin_file_path))
self.load_model(file_to_download)
def is_stable_video_diffusion(self, state_dict):
param_name = "model.diffusion_model.output_blocks.9.1.time_stack.0.norm_in.weight"
return param_name in state_dict
def is_RIFE(self, state_dict):
param_name = "block_tea.convblock3.0.1.weight"
return param_name in state_dict or ("module." + param_name) in state_dict
def is_beautiful_prompt(self, state_dict):
param_name = "transformer.h.9.self_attention.query_key_value.weight"
return param_name in state_dict
def is_stabe_diffusion_xl(self, state_dict):
param_name = "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight"
return param_name in state_dict
def is_stable_diffusion(self, state_dict):
if self.is_stabe_diffusion_xl(state_dict):
return False
param_name = "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight"
return param_name in state_dict
def is_controlnet(self, state_dict):
param_name = "control_model.time_embed.0.weight"
return param_name in state_dict
def is_animatediff(self, state_dict):
param_name = "mid_block.motion_modules.0.temporal_transformer.proj_out.weight"
return param_name in state_dict
def is_animatediff_xl(self, state_dict):
param_name = "up_blocks.2.motion_modules.2.temporal_transformer.transformer_blocks.0.ff_norm.weight"
return param_name in state_dict
def is_sd_lora(self, state_dict):
param_name = "lora_unet_up_blocks_3_attentions_2_transformer_blocks_0_ff_net_2.lora_up.weight"
return param_name in state_dict
def is_translator(self, state_dict):
param_name = "model.encoder.layers.5.self_attn_layer_norm.weight"
return param_name in state_dict and len(state_dict) == 258
def is_ipadapter(self, state_dict):
return "image_proj" in state_dict and "ip_adapter" in state_dict and state_dict["image_proj"]["proj.weight"].shape == torch.Size([3072, 1024])
def is_ipadapter_image_encoder(self, state_dict):
param_name = "vision_model.encoder.layers.31.self_attn.v_proj.weight"
return param_name in state_dict and len(state_dict) == 521
def is_ipadapter_xl(self, state_dict):
return "image_proj" in state_dict and "ip_adapter" in state_dict and state_dict["image_proj"]["proj.weight"].shape == torch.Size([8192, 1280])
def is_ipadapter_xl_image_encoder(self, state_dict):
param_name = "vision_model.encoder.layers.47.self_attn.v_proj.weight"
return param_name in state_dict and len(state_dict) == 777
def is_hunyuan_dit_clip_text_encoder(self, state_dict):
param_name = "bert.encoder.layer.23.attention.output.dense.weight"
return param_name in state_dict
def is_hunyuan_dit_t5_text_encoder(self, state_dict):
param_name = "encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"
param_name_ = "decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"
return param_name in state_dict and param_name_ in state_dict
def is_hunyuan_dit(self, state_dict):
param_name = "final_layer.adaLN_modulation.1.weight"
return param_name in state_dict
def is_diffusers_vae(self, state_dict):
param_name = "quant_conv.weight"
return param_name in state_dict
def is_ExVideo_StableVideoDiffusion(self, state_dict):
param_name = "blocks.185.positional_embedding.embeddings"
return param_name in state_dict
def is_stable_diffusion_3(self, state_dict):
param_names = [
"text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.v_proj.weight",
"text_encoders.clip_g.transformer.text_model.encoder.layers.9.self_attn.v_proj.weight",
"model.diffusion_model.joint_blocks.9.x_block.mlp.fc2.weight",
"first_stage_model.encoder.mid.block_2.norm2.weight",
"first_stage_model.decoder.mid.block_2.norm2.weight",
]
for param_name in param_names:
if param_name not in state_dict:
return False
return True
def is_stable_diffusion_3_t5(self, state_dict):
param_name = "encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"
return param_name in state_dict
def is_kolors_text_encoder(self, file_path):
file_list = os.listdir(file_path)
if "config.json" in file_list:
try:
with open(os.path.join(file_path, "config.json"), "r") as f:
config = json.load(f)
if config.get("model_type") == "chatglm":
return True
except:
pass
return False
def is_kolors_unet(self, state_dict):
return "up_blocks.2.resnets.2.time_emb_proj.weight" in state_dict and "encoder_hid_proj.weight" in state_dict
def load_stable_video_diffusion(self, state_dict, components=None, file_path="", add_positional_conv=None):
component_dict = {
"image_encoder": SVDImageEncoder,
"unet": SVDUNet,
"vae_decoder": SVDVAEDecoder,
"vae_encoder": SVDVAEEncoder,
}
if components is None:
components = ["image_encoder", "unet", "vae_decoder", "vae_encoder"]
for component in components:
if component == "unet":
self.model[component] = component_dict[component](add_positional_conv=add_positional_conv)
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict, add_positional_conv=add_positional_conv), strict=False)
else:
self.model[component] = component_dict[component]()
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict))
self.model[component].to(self.torch_dtype).to(self.device)
self.model_path[component] = file_path
def load_stable_diffusion(self, state_dict, components=None, file_path=""):
component_dict = {
"text_encoder": SDTextEncoder,
"unet": SDUNet,
"vae_decoder": SDVAEDecoder,
"vae_encoder": SDVAEEncoder,
"refiner": SDXLUNet,
}
if components is None:
components = ["text_encoder", "unet", "vae_decoder", "vae_encoder"]
for component in components:
if component == "text_encoder":
# Add additional token embeddings to text encoder
token_embeddings = [state_dict["cond_stage_model.transformer.text_model.embeddings.token_embedding.weight"]]
for keyword in self.textual_inversion_dict:
_, embeddings = self.textual_inversion_dict[keyword]
token_embeddings.append(embeddings.to(dtype=token_embeddings[0].dtype))
token_embeddings = torch.concat(token_embeddings, dim=0)
state_dict["cond_stage_model.transformer.text_model.embeddings.token_embedding.weight"] = token_embeddings
self.model[component] = component_dict[component](vocab_size=token_embeddings.shape[0])
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict))
self.model[component].to(self.torch_dtype).to(self.device)
else:
self.model[component] = component_dict[component]()
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict))
self.model[component].to(self.torch_dtype).to(self.device)
self.model_path[component] = file_path
def load_stable_diffusion_xl(self, state_dict, components=None, file_path=""):
component_dict = {
"text_encoder": SDXLTextEncoder,
"text_encoder_2": SDXLTextEncoder2,
"unet": SDXLUNet,
"vae_decoder": SDXLVAEDecoder,
"vae_encoder": SDXLVAEEncoder,
}
if components is None:
components = ["text_encoder", "text_encoder_2", "unet", "vae_decoder", "vae_encoder"]
for component in components:
self.model[component] = component_dict[component]()
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict))
if component in ["vae_decoder", "vae_encoder"]:
# These two model will output nan when float16 is enabled.
# The precision problem happens in the last three resnet blocks.
# I do not know how to solve this problem.
self.model[component].to(torch.float32).to(self.device)
else:
self.model[component].to(self.torch_dtype).to(self.device)
self.model_path[component] = file_path
def load_controlnet(self, state_dict, file_path=""):
component = "controlnet"
if component not in self.model:
self.model[component] = []
self.model_path[component] = []
model = SDControlNet()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component].append(model)
self.model_path[component].append(file_path)
def load_animatediff(self, state_dict, file_path=""):
component = "motion_modules"
model = SDMotionModel()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_animatediff_xl(self, state_dict, file_path=""):
component = "motion_modules_xl"
model = SDXLMotionModel()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_beautiful_prompt(self, state_dict, file_path=""):
component = "beautiful_prompt"
from transformers import AutoModelForCausalLM
model_folder = os.path.dirname(file_path)
model = AutoModelForCausalLM.from_pretrained(
model_folder, state_dict=state_dict, local_files_only=True, torch_dtype=self.torch_dtype
).to(self.device).eval()
self.model[component] = model
self.model_path[component] = file_path
def load_RIFE(self, state_dict, file_path=""):
component = "RIFE"
from ..extensions.RIFE import IFNet
model = IFNet().eval()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(torch.float32).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_sd_lora(self, state_dict, alpha):
SDLoRA().add_lora_to_text_encoder(self.model["text_encoder"], state_dict, alpha=alpha, device=self.device)
SDLoRA().add_lora_to_unet(self.model["unet"], state_dict, alpha=alpha, device=self.device)
def load_translator(self, state_dict, file_path=""):
# This model is lightweight, we do not place it on GPU.
component = "translator"
from transformers import AutoModelForSeq2SeqLM
model_folder = os.path.dirname(file_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_folder).eval()
self.model[component] = model
self.model_path[component] = file_path
def load_ipadapter(self, state_dict, file_path=""):
component = "ipadapter"
model = SDIpAdapter()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_ipadapter_image_encoder(self, state_dict, file_path=""):
component = "ipadapter_image_encoder"
model = IpAdapterCLIPImageEmbedder()
model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_ipadapter_xl(self, state_dict, file_path=""):
component = "ipadapter_xl"
model = SDXLIpAdapter()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_ipadapter_xl_image_encoder(self, state_dict, file_path=""):
component = "ipadapter_xl_image_encoder"
model = IpAdapterXLCLIPImageEmbedder()
model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_hunyuan_dit_clip_text_encoder(self, state_dict, file_path=""):
component = "hunyuan_dit_clip_text_encoder"
model = HunyuanDiTCLIPTextEncoder()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_hunyuan_dit_t5_text_encoder(self, state_dict, file_path=""):
component = "hunyuan_dit_t5_text_encoder"
model = HunyuanDiTT5TextEncoder()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_hunyuan_dit(self, state_dict, file_path=""):
component = "hunyuan_dit"
model = HunyuanDiT()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_diffusers_vae(self, state_dict, file_path=""):
# TODO: detect SD and SDXL
component = "vae_encoder"
model = SDXLVAEEncoder()
model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict))
model.to(torch.float32).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
component = "vae_decoder"
model = SDXLVAEDecoder()
model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict))
model.to(torch.float32).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_ExVideo_StableVideoDiffusion(self, state_dict, file_path=""):
unet_state_dict = self.model["unet"].state_dict()
self.model["unet"].to("cpu")
del self.model["unet"]
add_positional_conv = state_dict["blocks.185.positional_embedding.embeddings"].shape[0]
self.model["unet"] = SVDUNet(add_positional_conv=add_positional_conv)
self.model["unet"].load_state_dict(unet_state_dict, strict=False)
self.model["unet"].load_state_dict(state_dict, strict=False)
self.model["unet"].to(self.torch_dtype).to(self.device)
def load_stable_diffusion_3(self, state_dict, components=None, file_path=""):
component_dict = {
"sd3_text_encoder_1": SD3TextEncoder1,
"sd3_text_encoder_2": SD3TextEncoder2,
"sd3_text_encoder_3": SD3TextEncoder3,
"sd3_dit": SD3DiT,
"sd3_vae_decoder": SD3VAEDecoder,
"sd3_vae_encoder": SD3VAEEncoder,
}
if components is None:
components = ["sd3_text_encoder_1", "sd3_text_encoder_2", "sd3_text_encoder_3", "sd3_dit", "sd3_vae_decoder", "sd3_vae_encoder"]
for component in components:
if component == "sd3_text_encoder_3":
if "text_encoders.t5xxl.transformer.encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight" not in state_dict:
continue
if component == "sd3_text_encoder_1":
# Add additional token embeddings to text encoder
token_embeddings = [state_dict["text_encoders.clip_l.transformer.text_model.embeddings.token_embedding.weight"]]
for keyword in self.textual_inversion_dict:
_, embeddings = self.textual_inversion_dict[keyword]
token_embeddings.append(embeddings.to(dtype=token_embeddings[0].dtype))
token_embeddings = torch.concat(token_embeddings, dim=0)
state_dict["text_encoders.clip_l.transformer.text_model.embeddings.token_embedding.weight"] = token_embeddings
self.model[component] = component_dict[component](vocab_size=token_embeddings.shape[0])
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict))
self.model[component].to(self.torch_dtype).to(self.device)
else:
self.model[component] = component_dict[component]()
self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict))
self.model[component].to(self.torch_dtype).to(self.device)
self.model_path[component] = file_path
def load_stable_diffusion_3_t5(self, state_dict, file_path=""):
component = "sd3_text_encoder_3"
model = SD3TextEncoder3()
model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_kolors_text_encoder(self, state_dict=None, file_path=""):
component = "kolors_text_encoder"
model = ChatGLMModel.from_pretrained(file_path, torch_dtype=self.torch_dtype)
model = model.to(dtype=self.torch_dtype, device=self.device)
self.model[component] = model
self.model_path[component] = file_path
def load_kolors_unet(self, state_dict, file_path=""):
component = "kolors_unet"
model = SDXLUNet(is_kolors=True)
model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict))
model.to(self.torch_dtype).to(self.device)
self.model[component] = model
self.model_path[component] = file_path
def search_for_embeddings(self, state_dict):
embeddings = []
for k in state_dict:
if isinstance(state_dict[k], torch.Tensor):
embeddings.append(state_dict[k])
elif isinstance(state_dict[k], dict):
embeddings += self.search_for_embeddings(state_dict[k])
return embeddings
def load_textual_inversions(self, folder):
# Store additional tokens here
self.textual_inversion_dict = {}
# Load every textual inversion file
for file_name in os.listdir(folder):
if os.path.isdir(os.path.join(folder, file_name)) or \
not (file_name.endswith(".bin") or \
file_name.endswith(".safetensors") or \
file_name.endswith(".pth") or \
file_name.endswith(".pt")):
continue
keyword = os.path.splitext(file_name)[0]
state_dict = load_state_dict(os.path.join(folder, file_name))
# Search for embeddings
for embeddings in self.search_for_embeddings(state_dict):
if len(embeddings.shape) == 2 and embeddings.shape[1] == 768:
tokens = [f"{keyword}_{i}" for i in range(embeddings.shape[0])]
self.textual_inversion_dict[keyword] = (tokens, embeddings)
break
def load_model(self, file_path, components=None, lora_alphas=[]):
if os.path.isdir(file_path):
if self.is_kolors_text_encoder(file_path):
self.load_kolors_text_encoder(file_path=file_path)
return
state_dict = load_state_dict(file_path, torch_dtype=self.torch_dtype)
if self.is_stable_video_diffusion(state_dict):
self.load_stable_video_diffusion(state_dict, file_path=file_path)
elif self.is_animatediff(state_dict):
self.load_animatediff(state_dict, file_path=file_path)
elif self.is_animatediff_xl(state_dict):
self.load_animatediff_xl(state_dict, file_path=file_path)
elif self.is_controlnet(state_dict):
self.load_controlnet(state_dict, file_path=file_path)
elif self.is_stabe_diffusion_xl(state_dict):
self.load_stable_diffusion_xl(state_dict, components=components, file_path=file_path)
elif self.is_stable_diffusion(state_dict):
self.load_stable_diffusion(state_dict, components=components, file_path=file_path)
elif self.is_sd_lora(state_dict):
self.load_sd_lora(state_dict, alpha=lora_alphas.pop(0))
elif self.is_beautiful_prompt(state_dict):
self.load_beautiful_prompt(state_dict, file_path=file_path)
elif self.is_RIFE(state_dict):
self.load_RIFE(state_dict, file_path=file_path)
elif self.is_translator(state_dict):
self.load_translator(state_dict, file_path=file_path)
elif self.is_ipadapter(state_dict):
self.load_ipadapter(state_dict, file_path=file_path)
elif self.is_ipadapter_image_encoder(state_dict):
self.load_ipadapter_image_encoder(state_dict, file_path=file_path)
elif self.is_ipadapter_xl(state_dict):
self.load_ipadapter_xl(state_dict, file_path=file_path)
elif self.is_ipadapter_xl_image_encoder(state_dict):
self.load_ipadapter_xl_image_encoder(state_dict, file_path=file_path)
elif self.is_hunyuan_dit_clip_text_encoder(state_dict):
self.load_hunyuan_dit_clip_text_encoder(state_dict, file_path=file_path)
elif self.is_hunyuan_dit_t5_text_encoder(state_dict):
self.load_hunyuan_dit_t5_text_encoder(state_dict, file_path=file_path)
elif self.is_hunyuan_dit(state_dict):
self.load_hunyuan_dit(state_dict, file_path=file_path)
elif self.is_diffusers_vae(state_dict):
self.load_diffusers_vae(state_dict, file_path=file_path)
elif self.is_ExVideo_StableVideoDiffusion(state_dict):
self.load_ExVideo_StableVideoDiffusion(state_dict, file_path=file_path)
elif self.is_stable_diffusion_3(state_dict):
self.load_stable_diffusion_3(state_dict, components=components, file_path=file_path)
elif self.is_stable_diffusion_3_t5(state_dict):
self.load_stable_diffusion_3_t5(state_dict, file_path=file_path)
elif self.is_kolors_unet(state_dict):
self.load_kolors_unet(state_dict, file_path=file_path)
def load_models(self, file_path_list, lora_alphas=[]):
for file_path in file_path_list:
self.load_model(file_path, lora_alphas=lora_alphas)
def to(self, device):
for component in self.model:
if isinstance(self.model[component], list):
for model in self.model[component]:
model.to(device)
else:
self.model[component].to(device)
torch.cuda.empty_cache()
def get_model_with_model_path(self, model_path):
for component in self.model_path:
if isinstance(self.model_path[component], str):
if os.path.samefile(self.model_path[component], model_path):
return self.model[component]
elif isinstance(self.model_path[component], list):
for i, model_path_ in enumerate(self.model_path[component]):
if os.path.samefile(model_path_, model_path):
return self.model[component][i]
raise ValueError(f"Please load model {model_path} before you use it.")
def __getattr__(self, __name):
if __name in self.model:
return self.model[__name]
else:
return super.__getattribute__(__name)
def load_state_dict(file_path, torch_dtype=None):
if file_path.endswith(".safetensors"):
return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype)
else:
return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype)
def load_state_dict_from_safetensors(file_path, torch_dtype=None):
state_dict = {}
with safe_open(file_path, framework="pt", device="cpu") as f:
for k in f.keys():
state_dict[k] = f.get_tensor(k)
if torch_dtype is not None:
state_dict[k] = state_dict[k].to(torch_dtype)
return state_dict
def load_state_dict_from_bin(file_path, torch_dtype=None):
state_dict = torch.load(file_path, map_location="cpu")
if torch_dtype is not None:
for i in state_dict:
if isinstance(state_dict[i], torch.Tensor):
state_dict[i] = state_dict[i].to(torch_dtype)
return state_dict
def search_parameter(param, state_dict):
for name, param_ in state_dict.items():
if param.numel() == param_.numel():
if param.shape == param_.shape:
if torch.dist(param, param_) < 1e-6:
return name
else:
if torch.dist(param.flatten(), param_.flatten()) < 1e-6:
return name
return None
def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False):
matched_keys = set()
with torch.no_grad():
for name in source_state_dict:
rename = search_parameter(source_state_dict[name], target_state_dict)
if rename is not None:
print(f'"{name}": "{rename}",')
matched_keys.add(rename)
elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0:
length = source_state_dict[name].shape[0] // 3
rename = []
for i in range(3):
rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict))
if None not in rename:
print(f'"{name}": {rename},')
for rename_ in rename:
matched_keys.add(rename_)
for name in target_state_dict:
if name not in matched_keys:
print("Cannot find", name, target_state_dict[name].shape)
|