Spaces:
Runtime error
Runtime error
kevinwang676
commited on
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .github/ISSUE_TEMPLATE/bug_report.md +38 -0
- .github/ISSUE_TEMPLATE/feature_request.md +20 -0
- .gitignore +49 -0
- .gitmodules +3 -0
- CODE_OF_CONDUCT.md +76 -0
- FAQ.md +16 -0
- LICENSE +201 -0
- README.md +159 -13
- asset/dingding.png +0 -0
- cosyvoice/__init__.py +0 -0
- cosyvoice/bin/inference.py +114 -0
- cosyvoice/bin/train.py +136 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +83 -0
- cosyvoice/cli/frontend.py +168 -0
- cosyvoice/cli/model.py +60 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +160 -0
- cosyvoice/dataset/processor.py +369 -0
- cosyvoice/flow/decoder.py +222 -0
- cosyvoice/flow/flow.py +135 -0
- cosyvoice/flow/flow_matching.py +138 -0
- cosyvoice/flow/length_regulator.py +49 -0
- cosyvoice/hifigan/f0_predictor.py +55 -0
- cosyvoice/hifigan/generator.py +391 -0
- cosyvoice/llm/llm.py +206 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +326 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +293 -0
- cosyvoice/transformer/encoder.py +472 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/class_utils.py +70 -0
- cosyvoice/utils/common.py +103 -0
- cosyvoice/utils/executor.py +110 -0
- cosyvoice/utils/file_utils.py +41 -0
- cosyvoice/utils/frontend_utils.py +125 -0
- cosyvoice/utils/mask.py +227 -0
- cosyvoice/utils/scheduler.py +739 -0
- cosyvoice/utils/train_utils.py +289 -0
- examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml +198 -0
- examples/libritts/cosyvoice/conf/cosyvoice.yaml +198 -0
- examples/libritts/cosyvoice/conf/ds_stage2.json +42 -0
.github/ISSUE_TEMPLATE/bug_report.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: Bug report
|
3 |
+
about: Create a report to help us improve
|
4 |
+
title: ''
|
5 |
+
labels: ''
|
6 |
+
assignees: ''
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
**Describe the bug**
|
11 |
+
A clear and concise description of what the bug is.
|
12 |
+
|
13 |
+
**To Reproduce**
|
14 |
+
Steps to reproduce the behavior:
|
15 |
+
1. Go to '...'
|
16 |
+
2. Click on '....'
|
17 |
+
3. Scroll down to '....'
|
18 |
+
4. See error
|
19 |
+
|
20 |
+
**Expected behavior**
|
21 |
+
A clear and concise description of what you expected to happen.
|
22 |
+
|
23 |
+
**Screenshots**
|
24 |
+
If applicable, add screenshots to help explain your problem.
|
25 |
+
|
26 |
+
**Desktop (please complete the following information):**
|
27 |
+
- OS: [e.g. iOS]
|
28 |
+
- Browser [e.g. chrome, safari]
|
29 |
+
- Version [e.g. 22]
|
30 |
+
|
31 |
+
**Smartphone (please complete the following information):**
|
32 |
+
- Device: [e.g. iPhone6]
|
33 |
+
- OS: [e.g. iOS8.1]
|
34 |
+
- Browser [e.g. stock browser, safari]
|
35 |
+
- Version [e.g. 22]
|
36 |
+
|
37 |
+
**Additional context**
|
38 |
+
Add any other context about the problem here.
|
.github/ISSUE_TEMPLATE/feature_request.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: Feature request
|
3 |
+
about: Suggest an idea for this project
|
4 |
+
title: ''
|
5 |
+
labels: ''
|
6 |
+
assignees: ''
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
**Is your feature request related to a problem? Please describe.**
|
11 |
+
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
12 |
+
|
13 |
+
**Describe the solution you'd like**
|
14 |
+
A clear and concise description of what you want to happen.
|
15 |
+
|
16 |
+
**Describe alternatives you've considered**
|
17 |
+
A clear and concise description of any alternative solutions or features you've considered.
|
18 |
+
|
19 |
+
**Additional context**
|
20 |
+
Add any other context or screenshots about the feature request here.
|
.gitignore
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# Visual Studio Code files
|
7 |
+
.vscode
|
8 |
+
.vs
|
9 |
+
|
10 |
+
# PyCharm files
|
11 |
+
.idea
|
12 |
+
|
13 |
+
# Eclipse Project settings
|
14 |
+
*.*project
|
15 |
+
.settings
|
16 |
+
|
17 |
+
# Sublime Text settings
|
18 |
+
*.sublime-workspace
|
19 |
+
*.sublime-project
|
20 |
+
|
21 |
+
# Editor temporaries
|
22 |
+
*.swn
|
23 |
+
*.swo
|
24 |
+
*.swp
|
25 |
+
*.swm
|
26 |
+
*~
|
27 |
+
|
28 |
+
# IPython notebook checkpoints
|
29 |
+
.ipynb_checkpoints
|
30 |
+
|
31 |
+
# macOS dir files
|
32 |
+
.DS_Store
|
33 |
+
|
34 |
+
exp
|
35 |
+
data
|
36 |
+
raw_wav
|
37 |
+
tensorboard
|
38 |
+
**/*build*
|
39 |
+
|
40 |
+
# Clangd files
|
41 |
+
.cache
|
42 |
+
compile_commands.json
|
43 |
+
|
44 |
+
# train/inference files
|
45 |
+
*.wav
|
46 |
+
*.pt
|
47 |
+
pretrained_models/*
|
48 |
+
*_pb2_grpc.py
|
49 |
+
*_pb2.py
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "third_party/Matcha-TTS"]
|
2 |
+
path = third_party/Matcha-TTS
|
3 |
+
url = https://github.com/shivammehta25/Matcha-TTS.git
|
CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Contributor Covenant Code of Conduct
|
2 |
+
|
3 |
+
## Our Pledge
|
4 |
+
|
5 |
+
In the interest of fostering an open and welcoming environment, we as
|
6 |
+
contributors and maintainers pledge to making participation in our project and
|
7 |
+
our community a harassment-free experience for everyone, regardless of age, body
|
8 |
+
size, disability, ethnicity, sex characteristics, gender identity and expression,
|
9 |
+
level of experience, education, socio-economic status, nationality, personal
|
10 |
+
appearance, race, religion, or sexual identity and orientation.
|
11 |
+
|
12 |
+
## Our Standards
|
13 |
+
|
14 |
+
Examples of behavior that contributes to creating a positive environment
|
15 |
+
include:
|
16 |
+
|
17 |
+
* Using welcoming and inclusive language
|
18 |
+
* Being respectful of differing viewpoints and experiences
|
19 |
+
* Gracefully accepting constructive criticism
|
20 |
+
* Focusing on what is best for the community
|
21 |
+
* Showing empathy towards other community members
|
22 |
+
|
23 |
+
Examples of unacceptable behavior by participants include:
|
24 |
+
|
25 |
+
* The use of sexualized language or imagery and unwelcome sexual attention or
|
26 |
+
advances
|
27 |
+
* Trolling, insulting/derogatory comments, and personal or political attacks
|
28 |
+
* Public or private harassment
|
29 |
+
* Publishing others' private information, such as a physical or electronic
|
30 |
+
address, without explicit permission
|
31 |
+
* Other conduct which could reasonably be considered inappropriate in a
|
32 |
+
professional setting
|
33 |
+
|
34 |
+
## Our Responsibilities
|
35 |
+
|
36 |
+
Project maintainers are responsible for clarifying the standards of acceptable
|
37 |
+
behavior and are expected to take appropriate and fair corrective action in
|
38 |
+
response to any instances of unacceptable behavior.
|
39 |
+
|
40 |
+
Project maintainers have the right and responsibility to remove, edit, or
|
41 |
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
42 |
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
43 |
+
permanently any contributor for other behaviors that they deem inappropriate,
|
44 |
+
threatening, offensive, or harmful.
|
45 |
+
|
46 |
+
## Scope
|
47 |
+
|
48 |
+
This Code of Conduct applies both within project spaces and in public spaces
|
49 |
+
when an individual is representing the project or its community. Examples of
|
50 |
+
representing a project or community include using an official project e-mail
|
51 |
+
address, posting via an official social media account, or acting as an appointed
|
52 |
+
representative at an online or offline event. Representation of a project may be
|
53 |
+
further defined and clarified by project maintainers.
|
54 |
+
|
55 |
+
## Enforcement
|
56 |
+
|
57 |
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
58 |
+
reported by contacting the project team at [email protected]. All
|
59 |
+
complaints will be reviewed and investigated and will result in a response that
|
60 |
+
is deemed necessary and appropriate to the circumstances. The project team is
|
61 |
+
obligated to maintain confidentiality with regard to the reporter of an incident.
|
62 |
+
Further details of specific enforcement policies may be posted separately.
|
63 |
+
|
64 |
+
Project maintainers who do not follow or enforce the Code of Conduct in good
|
65 |
+
faith may face temporary or permanent repercussions as determined by other
|
66 |
+
members of the project's leadership.
|
67 |
+
|
68 |
+
## Attribution
|
69 |
+
|
70 |
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
71 |
+
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
|
72 |
+
|
73 |
+
[homepage]: https://www.contributor-covenant.org
|
74 |
+
|
75 |
+
For answers to common questions about this code of conduct, see
|
76 |
+
https://www.contributor-covenant.org/faq
|
FAQ.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## ModuleNotFoundError: No module named 'matcha'
|
2 |
+
|
3 |
+
Matcha-TTS is a third_party module. Please check `third_party` directory. If there is no `Matcha-TTS`, execute `git submodule update --init --recursive`.
|
4 |
+
|
5 |
+
run `export PYTHONPATH=third_party/Matcha-TTS` if you want to use `from cosyvoice.cli.cosyvoice import CosyVoice` in python script.
|
6 |
+
|
7 |
+
## cannot find resource.zip or cannot unzip resource.zip
|
8 |
+
|
9 |
+
Please make sure you have git-lfs installed. Execute
|
10 |
+
|
11 |
+
```sh
|
12 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
13 |
+
cd pretrained_models/CosyVoice-ttsfrd/
|
14 |
+
unzip resource.zip -d .
|
15 |
+
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
|
16 |
+
```
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,13 +1,159 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CosyVoice
|
2 |
+
## 👉🏻 [CosyVoice Demos](https://fun-audio-llm.github.io/) 👈🏻
|
3 |
+
[[CosyVoice Paper](https://fun-audio-llm.github.io/pdf/CosyVoice_v1.pdf)][[CosyVoice Studio](https://www.modelscope.cn/studios/iic/CosyVoice-300M)][[CosyVoice Code](https://github.com/FunAudioLLM/CosyVoice)]
|
4 |
+
|
5 |
+
For `SenseVoice`, visit [SenseVoice repo](https://github.com/FunAudioLLM/SenseVoice) and [SenseVoice space](https://www.modelscope.cn/studios/iic/SenseVoice).
|
6 |
+
|
7 |
+
## Install
|
8 |
+
|
9 |
+
**Clone and install**
|
10 |
+
|
11 |
+
- Clone the repo
|
12 |
+
``` sh
|
13 |
+
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
14 |
+
# If you failed to clone submodule due to network failures, please run following command until success
|
15 |
+
cd CosyVoice
|
16 |
+
git submodule update --init --recursive
|
17 |
+
```
|
18 |
+
|
19 |
+
- Install Conda: please see https://docs.conda.io/en/latest/miniconda.html
|
20 |
+
- Create Conda env:
|
21 |
+
|
22 |
+
``` sh
|
23 |
+
conda create -n cosyvoice python=3.8
|
24 |
+
conda activate cosyvoice
|
25 |
+
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
|
26 |
+
conda install -y -c conda-forge pynini==2.1.5
|
27 |
+
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
28 |
+
|
29 |
+
# If you encounter sox compatibility issues
|
30 |
+
# ubuntu
|
31 |
+
sudo apt-get install sox libsox-dev
|
32 |
+
# centos
|
33 |
+
sudo yum install sox sox-devel
|
34 |
+
```
|
35 |
+
|
36 |
+
**Model download**
|
37 |
+
|
38 |
+
We strongly recommend that you download our pretrained `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
39 |
+
|
40 |
+
If you are expert in this field, and you are only interested in training your own CosyVoice model from scratch, you can skip this step.
|
41 |
+
|
42 |
+
``` python
|
43 |
+
# SDK模型下载
|
44 |
+
from modelscope import snapshot_download
|
45 |
+
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
46 |
+
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
47 |
+
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
48 |
+
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
49 |
+
```
|
50 |
+
|
51 |
+
``` sh
|
52 |
+
# git模型下载,请确保已安装git lfs
|
53 |
+
mkdir -p pretrained_models
|
54 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
|
55 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
|
56 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
|
57 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
58 |
+
```
|
59 |
+
|
60 |
+
Optionaly, you can unzip `ttsfrd` resouce and install `ttsfrd` package for better text normalization performance.
|
61 |
+
|
62 |
+
Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use WeTextProcessing by default.
|
63 |
+
|
64 |
+
``` sh
|
65 |
+
cd pretrained_models/CosyVoice-ttsfrd/
|
66 |
+
unzip resource.zip -d .
|
67 |
+
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
|
68 |
+
```
|
69 |
+
|
70 |
+
**Basic Usage**
|
71 |
+
|
72 |
+
For zero_shot/cross_lingual inference, please use `CosyVoice-300M` model.
|
73 |
+
For sft inference, please use `CosyVoice-300M-SFT` model.
|
74 |
+
For instruct inference, please use `CosyVoice-300M-Instruct` model.
|
75 |
+
First, add `third_party/Matcha-TTS` to your `PYTHONPATH`.
|
76 |
+
|
77 |
+
``` sh
|
78 |
+
export PYTHONPATH=third_party/Matcha-TTS
|
79 |
+
```
|
80 |
+
|
81 |
+
``` python
|
82 |
+
from cosyvoice.cli.cosyvoice import CosyVoice
|
83 |
+
from cosyvoice.utils.file_utils import load_wav
|
84 |
+
import torchaudio
|
85 |
+
|
86 |
+
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT')
|
87 |
+
# sft usage
|
88 |
+
print(cosyvoice.list_avaliable_spks())
|
89 |
+
output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女')
|
90 |
+
torchaudio.save('sft.wav', output['tts_speech'], 22050)
|
91 |
+
|
92 |
+
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
|
93 |
+
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
94 |
+
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
95 |
+
output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k)
|
96 |
+
torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)
|
97 |
+
# cross_lingual usage
|
98 |
+
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
|
99 |
+
output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k)
|
100 |
+
torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050)
|
101 |
+
|
102 |
+
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
|
103 |
+
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
|
104 |
+
output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
|
105 |
+
torchaudio.save('instruct.wav', output['tts_speech'], 22050)
|
106 |
+
```
|
107 |
+
|
108 |
+
**Start web demo**
|
109 |
+
|
110 |
+
You can use our web demo page to get familiar with CosyVoice quickly.
|
111 |
+
We support sft/zero_shot/cross_lingual/instruct inference in web demo.
|
112 |
+
|
113 |
+
Please see the demo website for details.
|
114 |
+
|
115 |
+
``` python
|
116 |
+
# change iic/CosyVoice-300M-SFT for sft inference, or iic/CosyVoice-300M-Instruct for instruct inference
|
117 |
+
python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M
|
118 |
+
```
|
119 |
+
|
120 |
+
**Advanced Usage**
|
121 |
+
|
122 |
+
For advanced user, we have provided train and inference scripts in `examples/libritts/cosyvoice/run.sh`.
|
123 |
+
You can get familiar with CosyVoice following this recipie.
|
124 |
+
|
125 |
+
**Build for deployment**
|
126 |
+
|
127 |
+
Optionally, if you want to use grpc for service deployment,
|
128 |
+
you can run following steps. Otherwise, you can just ignore this step.
|
129 |
+
|
130 |
+
``` sh
|
131 |
+
cd runtime/python
|
132 |
+
docker build -t cosyvoice:v1.0 .
|
133 |
+
# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
|
134 |
+
# for grpc usage
|
135 |
+
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
|
136 |
+
python3 grpc/client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
137 |
+
# for fastapi usage
|
138 |
+
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && MODEL_DIR=iic/CosyVoice-300M fastapi dev --port 50000 server.py && sleep infinity"
|
139 |
+
python3 fastapi/client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
140 |
+
```
|
141 |
+
|
142 |
+
## Discussion & Communication
|
143 |
+
|
144 |
+
You can directly discuss on [Github Issues](https://github.com/FunAudioLLM/CosyVoice/issues).
|
145 |
+
|
146 |
+
You can also scan the QR code to join our official Dingding chat group.
|
147 |
+
|
148 |
+
<img src="./asset/dingding.png" width="250px">
|
149 |
+
|
150 |
+
## Acknowledge
|
151 |
+
|
152 |
+
1. We borrowed a lot of code from [FunASR](https://github.com/modelscope/FunASR).
|
153 |
+
2. We borrowed a lot of code from [FunCodec](https://github.com/modelscope/FunCodec).
|
154 |
+
3. We borrowed a lot of code from [Matcha-TTS](https://github.com/shivammehta25/Matcha-TTS).
|
155 |
+
4. We borrowed a lot of code from [AcademiCodec](https://github.com/yangdongchao/AcademiCodec).
|
156 |
+
5. We borrowed a lot of code from [WeNet](https://github.com/wenet-e2e/wenet).
|
157 |
+
|
158 |
+
## Disclaimer
|
159 |
+
The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.
|
asset/dingding.png
ADDED
cosyvoice/__init__.py
ADDED
File without changes
|
cosyvoice/bin/inference.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
import torchaudio
|
25 |
+
from hyperpyyaml import load_hyperpyyaml
|
26 |
+
from tqdm import tqdm
|
27 |
+
from cosyvoice.cli.model import CosyVoiceModel
|
28 |
+
|
29 |
+
from cosyvoice.dataset.dataset import Dataset
|
30 |
+
|
31 |
+
def get_args():
|
32 |
+
parser = argparse.ArgumentParser(description='inference with your model')
|
33 |
+
parser.add_argument('--config', required=True, help='config file')
|
34 |
+
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
35 |
+
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
36 |
+
parser.add_argument('--tts_text', required=True, help='tts input file')
|
37 |
+
parser.add_argument('--llm_model', required=True, help='llm model file')
|
38 |
+
parser.add_argument('--flow_model', required=True, help='flow model file')
|
39 |
+
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
40 |
+
parser.add_argument('--gpu',
|
41 |
+
type=int,
|
42 |
+
default=-1,
|
43 |
+
help='gpu id for this rank, -1 for cpu')
|
44 |
+
parser.add_argument('--mode',
|
45 |
+
default='sft',
|
46 |
+
choices=['sft', 'zero_shot'],
|
47 |
+
help='inference mode')
|
48 |
+
parser.add_argument('--result_dir', required=True, help='asr result file')
|
49 |
+
args = parser.parse_args()
|
50 |
+
print(args)
|
51 |
+
return args
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
args = get_args()
|
56 |
+
logging.basicConfig(level=logging.DEBUG,
|
57 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
58 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
59 |
+
|
60 |
+
# Init cosyvoice models from configs
|
61 |
+
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
62 |
+
device = torch.device('cuda' if use_cuda else 'cpu')
|
63 |
+
with open(args.config, 'r') as f:
|
64 |
+
configs = load_hyperpyyaml(f)
|
65 |
+
|
66 |
+
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
67 |
+
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
68 |
+
|
69 |
+
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False, tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
70 |
+
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
71 |
+
|
72 |
+
del configs
|
73 |
+
os.makedirs(args.result_dir, exist_ok=True)
|
74 |
+
fn = os.path.join(args.result_dir, 'wav.scp')
|
75 |
+
f = open(fn, 'w')
|
76 |
+
with torch.no_grad():
|
77 |
+
for batch_idx, batch in tqdm(enumerate(test_data_loader)):
|
78 |
+
utts = batch["utts"]
|
79 |
+
assert len(utts) == 1, "inference mode only support batchsize 1"
|
80 |
+
text = batch["text"]
|
81 |
+
text_token = batch["text_token"].to(device)
|
82 |
+
text_token_len = batch["text_token_len"].to(device)
|
83 |
+
tts_text = batch["tts_text"]
|
84 |
+
tts_index = batch["tts_index"]
|
85 |
+
tts_text_token = batch["tts_text_token"].to(device)
|
86 |
+
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
87 |
+
speech_token = batch["speech_token"].to(device)
|
88 |
+
speech_token_len = batch["speech_token_len"].to(device)
|
89 |
+
speech_feat = batch["speech_feat"].to(device)
|
90 |
+
speech_feat_len = batch["speech_feat_len"].to(device)
|
91 |
+
utt_embedding = batch["utt_embedding"].to(device)
|
92 |
+
spk_embedding = batch["spk_embedding"].to(device)
|
93 |
+
if args.mode == 'sft':
|
94 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
95 |
+
'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
|
96 |
+
else:
|
97 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
98 |
+
'prompt_text': text_token, 'prompt_text_len': text_token_len,
|
99 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
100 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
101 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
102 |
+
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
103 |
+
model_output = model.inference(**model_input)
|
104 |
+
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
105 |
+
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
106 |
+
torchaudio.save(tts_fn, model_output['tts_speech'], sample_rate=22050)
|
107 |
+
f.write('{} {}\n'.format(tts_key, tts_fn))
|
108 |
+
f.flush()
|
109 |
+
f.close()
|
110 |
+
logging.info('Result wav.scp saved in {}'.format(fn))
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == '__main__':
|
114 |
+
main()
|
cosyvoice/bin/train.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
import argparse
|
17 |
+
import datetime
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
from copy import deepcopy
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
import deepspeed
|
24 |
+
|
25 |
+
from hyperpyyaml import load_hyperpyyaml
|
26 |
+
|
27 |
+
from torch.distributed.elastic.multiprocessing.errors import record
|
28 |
+
|
29 |
+
from cosyvoice.utils.executor import Executor
|
30 |
+
from cosyvoice.utils.train_utils import (
|
31 |
+
init_distributed,
|
32 |
+
init_dataset_and_dataloader,
|
33 |
+
init_optimizer_and_scheduler,
|
34 |
+
init_summarywriter, save_model,
|
35 |
+
wrap_cuda_model, check_modify_and_save_config)
|
36 |
+
|
37 |
+
|
38 |
+
def get_args():
|
39 |
+
parser = argparse.ArgumentParser(description='training your network')
|
40 |
+
parser.add_argument('--train_engine',
|
41 |
+
default='torch_ddp',
|
42 |
+
choices=['torch_ddp', 'deepspeed'],
|
43 |
+
help='Engine for paralleled training')
|
44 |
+
parser.add_argument('--model', required=True, help='model which will be trained')
|
45 |
+
parser.add_argument('--config', required=True, help='config file')
|
46 |
+
parser.add_argument('--train_data', required=True, help='train data file')
|
47 |
+
parser.add_argument('--cv_data', required=True, help='cv data file')
|
48 |
+
parser.add_argument('--checkpoint', help='checkpoint model')
|
49 |
+
parser.add_argument('--model_dir', required=True, help='save model dir')
|
50 |
+
parser.add_argument('--tensorboard_dir',
|
51 |
+
default='tensorboard',
|
52 |
+
help='tensorboard log dir')
|
53 |
+
parser.add_argument('--ddp.dist_backend',
|
54 |
+
dest='dist_backend',
|
55 |
+
default='nccl',
|
56 |
+
choices=['nccl', 'gloo'],
|
57 |
+
help='distributed backend')
|
58 |
+
parser.add_argument('--num_workers',
|
59 |
+
default=0,
|
60 |
+
type=int,
|
61 |
+
help='num of subprocess workers for reading')
|
62 |
+
parser.add_argument('--prefetch',
|
63 |
+
default=100,
|
64 |
+
type=int,
|
65 |
+
help='prefetch number')
|
66 |
+
parser.add_argument('--pin_memory',
|
67 |
+
action='store_true',
|
68 |
+
default=False,
|
69 |
+
help='Use pinned memory buffers used for reading')
|
70 |
+
parser.add_argument('--deepspeed.save_states',
|
71 |
+
dest='save_states',
|
72 |
+
default='model_only',
|
73 |
+
choices=['model_only', 'model+optimizer'],
|
74 |
+
help='save model/optimizer states')
|
75 |
+
parser.add_argument('--timeout',
|
76 |
+
default=30,
|
77 |
+
type=int,
|
78 |
+
help='timeout (in seconds) of cosyvoice_join.')
|
79 |
+
parser = deepspeed.add_config_arguments(parser)
|
80 |
+
args = parser.parse_args()
|
81 |
+
return args
|
82 |
+
|
83 |
+
|
84 |
+
@record
|
85 |
+
def main():
|
86 |
+
args = get_args()
|
87 |
+
logging.basicConfig(level=logging.DEBUG,
|
88 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
89 |
+
|
90 |
+
override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
|
91 |
+
with open(args.config, 'r') as f:
|
92 |
+
configs = load_hyperpyyaml(f, overrides=override_dict)
|
93 |
+
configs['train_conf'].update(vars(args))
|
94 |
+
|
95 |
+
# Init env for ddp
|
96 |
+
init_distributed(args)
|
97 |
+
|
98 |
+
# Get dataset & dataloader
|
99 |
+
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
100 |
+
init_dataset_and_dataloader(args, configs)
|
101 |
+
|
102 |
+
# Do some sanity checks and save config to arsg.model_dir
|
103 |
+
configs = check_modify_and_save_config(args, configs)
|
104 |
+
|
105 |
+
# Tensorboard summary
|
106 |
+
writer = init_summarywriter(args)
|
107 |
+
|
108 |
+
# load checkpoint
|
109 |
+
model = configs[args.model]
|
110 |
+
if args.checkpoint is not None:
|
111 |
+
model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
|
112 |
+
|
113 |
+
# Dispatch model from cpu to gpu
|
114 |
+
model = wrap_cuda_model(args, model)
|
115 |
+
|
116 |
+
# Get optimizer & scheduler
|
117 |
+
model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
|
118 |
+
|
119 |
+
# Save init checkpoints
|
120 |
+
info_dict = deepcopy(configs['train_conf'])
|
121 |
+
save_model(model, 'init', info_dict)
|
122 |
+
|
123 |
+
# Get executor
|
124 |
+
executor = Executor()
|
125 |
+
|
126 |
+
# Start training loop
|
127 |
+
for epoch in range(info_dict['max_epoch']):
|
128 |
+
executor.epoch = epoch
|
129 |
+
train_dataset.set_epoch(epoch)
|
130 |
+
dist.barrier()
|
131 |
+
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
132 |
+
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join)
|
133 |
+
dist.destroy_process_group(group_join)
|
134 |
+
|
135 |
+
if __name__ == '__main__':
|
136 |
+
main()
|
cosyvoice/cli/__init__.py
ADDED
File without changes
|
cosyvoice/cli/cosyvoice.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
import torch
|
16 |
+
from hyperpyyaml import load_hyperpyyaml
|
17 |
+
from modelscope import snapshot_download
|
18 |
+
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
19 |
+
from cosyvoice.cli.model import CosyVoiceModel
|
20 |
+
|
21 |
+
class CosyVoice:
|
22 |
+
|
23 |
+
def __init__(self, model_dir):
|
24 |
+
instruct = True if '-Instruct' in model_dir else False
|
25 |
+
self.model_dir = model_dir
|
26 |
+
if not os.path.exists(model_dir):
|
27 |
+
model_dir = snapshot_download(model_dir)
|
28 |
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
29 |
+
configs = load_hyperpyyaml(f)
|
30 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
31 |
+
configs['feat_extractor'],
|
32 |
+
'{}/campplus.onnx'.format(model_dir),
|
33 |
+
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
34 |
+
'{}/spk2info.pt'.format(model_dir),
|
35 |
+
instruct,
|
36 |
+
configs['allowed_special'])
|
37 |
+
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
38 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
39 |
+
'{}/flow.pt'.format(model_dir),
|
40 |
+
'{}/hift.pt'.format(model_dir))
|
41 |
+
del configs
|
42 |
+
|
43 |
+
def list_avaliable_spks(self):
|
44 |
+
spks = list(self.frontend.spk2info.keys())
|
45 |
+
return spks
|
46 |
+
|
47 |
+
def inference_sft(self, tts_text, spk_id):
|
48 |
+
tts_speeches = []
|
49 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
50 |
+
model_input = self.frontend.frontend_sft(i, spk_id)
|
51 |
+
model_output = self.model.inference(**model_input)
|
52 |
+
tts_speeches.append(model_output['tts_speech'])
|
53 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
54 |
+
|
55 |
+
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
56 |
+
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
57 |
+
tts_speeches = []
|
58 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
59 |
+
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
60 |
+
model_output = self.model.inference(**model_input)
|
61 |
+
tts_speeches.append(model_output['tts_speech'])
|
62 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
63 |
+
|
64 |
+
def inference_cross_lingual(self, tts_text, prompt_speech_16k):
|
65 |
+
if self.frontend.instruct is True:
|
66 |
+
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
67 |
+
tts_speeches = []
|
68 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
69 |
+
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
70 |
+
model_output = self.model.inference(**model_input)
|
71 |
+
tts_speeches.append(model_output['tts_speech'])
|
72 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
73 |
+
|
74 |
+
def inference_instruct(self, tts_text, spk_id, instruct_text):
|
75 |
+
if self.frontend.instruct is False:
|
76 |
+
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
77 |
+
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
78 |
+
tts_speeches = []
|
79 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
80 |
+
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
81 |
+
model_output = self.model.inference(**model_input)
|
82 |
+
tts_speeches.append(model_output['tts_speech'])
|
83 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
cosyvoice/cli/frontend.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from functools import partial
|
15 |
+
import onnxruntime
|
16 |
+
import torch
|
17 |
+
import numpy as np
|
18 |
+
import whisper
|
19 |
+
from typing import Callable
|
20 |
+
import torchaudio.compliance.kaldi as kaldi
|
21 |
+
import torchaudio
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import inflect
|
25 |
+
try:
|
26 |
+
import ttsfrd
|
27 |
+
use_ttsfrd = True
|
28 |
+
except ImportError:
|
29 |
+
print("failed to import ttsfrd, use WeTextProcessing instead")
|
30 |
+
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
31 |
+
from tn.english.normalizer import Normalizer as EnNormalizer
|
32 |
+
use_ttsfrd = False
|
33 |
+
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
|
34 |
+
|
35 |
+
|
36 |
+
class CosyVoiceFrontEnd:
|
37 |
+
|
38 |
+
def __init__(self,
|
39 |
+
get_tokenizer: Callable,
|
40 |
+
feat_extractor: Callable,
|
41 |
+
campplus_model: str,
|
42 |
+
speech_tokenizer_model: str,
|
43 |
+
spk2info: str = '',
|
44 |
+
instruct: bool = False,
|
45 |
+
allowed_special: str = 'all'):
|
46 |
+
self.tokenizer = get_tokenizer()
|
47 |
+
self.feat_extractor = feat_extractor
|
48 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
49 |
+
option = onnxruntime.SessionOptions()
|
50 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
51 |
+
option.intra_op_num_threads = 1
|
52 |
+
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
53 |
+
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider"if torch.cuda.is_available() else "CPUExecutionProvider"])
|
54 |
+
if os.path.exists(spk2info):
|
55 |
+
self.spk2info = torch.load(spk2info, map_location=self.device)
|
56 |
+
self.instruct = instruct
|
57 |
+
self.allowed_special = allowed_special
|
58 |
+
self.inflect_parser = inflect.engine()
|
59 |
+
self.use_ttsfrd = use_ttsfrd
|
60 |
+
if self.use_ttsfrd:
|
61 |
+
self.frd = ttsfrd.TtsFrontendEngine()
|
62 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
63 |
+
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, 'failed to initialize ttsfrd resource'
|
64 |
+
self.frd.set_lang_type('pinyin')
|
65 |
+
self.frd.enable_pinyin_mix(True)
|
66 |
+
self.frd.set_breakmodel_index(1)
|
67 |
+
else:
|
68 |
+
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False)
|
69 |
+
self.en_tn_model = EnNormalizer()
|
70 |
+
|
71 |
+
def _extract_text_token(self, text):
|
72 |
+
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
73 |
+
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
74 |
+
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
75 |
+
return text_token, text_token_len
|
76 |
+
|
77 |
+
def _extract_speech_token(self, speech):
|
78 |
+
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
79 |
+
speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
80 |
+
self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
81 |
+
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
82 |
+
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
83 |
+
return speech_token, speech_token_len
|
84 |
+
|
85 |
+
def _extract_spk_embedding(self, speech):
|
86 |
+
feat = kaldi.fbank(speech,
|
87 |
+
num_mel_bins=80,
|
88 |
+
dither=0,
|
89 |
+
sample_frequency=16000)
|
90 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
91 |
+
embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
92 |
+
embedding = torch.tensor([embedding]).to(self.device)
|
93 |
+
return embedding
|
94 |
+
|
95 |
+
def _extract_speech_feat(self, speech):
|
96 |
+
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
97 |
+
speech_feat = speech_feat.unsqueeze(dim=0)
|
98 |
+
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
99 |
+
return speech_feat, speech_feat_len
|
100 |
+
|
101 |
+
def text_normalize(self, text, split=True):
|
102 |
+
text = text.strip()
|
103 |
+
if contains_chinese(text):
|
104 |
+
if self.use_ttsfrd:
|
105 |
+
text = self.frd.get_frd_extra_info(text, 'input')
|
106 |
+
else:
|
107 |
+
text = self.zh_tn_model.normalize(text)
|
108 |
+
text = text.replace("\n", "")
|
109 |
+
text = replace_blank(text)
|
110 |
+
text = replace_corner_mark(text)
|
111 |
+
text = text.replace(".", "、")
|
112 |
+
text = text.replace(" - ", ",")
|
113 |
+
text = remove_bracket(text)
|
114 |
+
text = re.sub(r'[,,]+$', '。', text)
|
115 |
+
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
116 |
+
token_min_n=60, merge_len=20,
|
117 |
+
comma_split=False)]
|
118 |
+
else:
|
119 |
+
if self.use_ttsfrd:
|
120 |
+
text = self.frd.get_frd_extra_info(text, 'input')
|
121 |
+
else:
|
122 |
+
text = self.en_tn_model.normalize(text)
|
123 |
+
text = spell_out_number(text, self.inflect_parser)
|
124 |
+
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
125 |
+
token_min_n=60, merge_len=20,
|
126 |
+
comma_split=False)]
|
127 |
+
if split is False:
|
128 |
+
return text
|
129 |
+
return texts
|
130 |
+
|
131 |
+
def frontend_sft(self, tts_text, spk_id):
|
132 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
133 |
+
embedding = self.spk2info[spk_id]['embedding']
|
134 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
135 |
+
return model_input
|
136 |
+
|
137 |
+
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
138 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
139 |
+
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
140 |
+
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
141 |
+
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
142 |
+
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
143 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
144 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
145 |
+
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
146 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
147 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
148 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
149 |
+
'llm_embedding': embedding, 'flow_embedding': embedding}
|
150 |
+
return model_input
|
151 |
+
|
152 |
+
def frontend_cross_lingual(self, tts_text, prompt_speech_16k):
|
153 |
+
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k)
|
154 |
+
# in cross lingual mode, we remove prompt in llm
|
155 |
+
del model_input['prompt_text']
|
156 |
+
del model_input['prompt_text_len']
|
157 |
+
del model_input['llm_prompt_speech_token']
|
158 |
+
del model_input['llm_prompt_speech_token_len']
|
159 |
+
return model_input
|
160 |
+
|
161 |
+
def frontend_instruct(self, tts_text, spk_id, instruct_text):
|
162 |
+
model_input = self.frontend_sft(tts_text, spk_id)
|
163 |
+
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
164 |
+
del model_input['llm_embedding']
|
165 |
+
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
|
166 |
+
model_input['prompt_text'] = instruct_text_token
|
167 |
+
model_input['prompt_text_len'] = instruct_text_token_len
|
168 |
+
return model_input
|
cosyvoice/cli/model.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
|
16 |
+
class CosyVoiceModel:
|
17 |
+
|
18 |
+
def __init__(self,
|
19 |
+
llm: torch.nn.Module,
|
20 |
+
flow: torch.nn.Module,
|
21 |
+
hift: torch.nn.Module):
|
22 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
+
self.llm = llm
|
24 |
+
self.flow = flow
|
25 |
+
self.hift = hift
|
26 |
+
|
27 |
+
def load(self, llm_model, flow_model, hift_model):
|
28 |
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
29 |
+
self.llm.to(self.device).eval()
|
30 |
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
31 |
+
self.flow.to(self.device).eval()
|
32 |
+
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
33 |
+
self.hift.to(self.device).eval()
|
34 |
+
|
35 |
+
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
36 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
37 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
38 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
39 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
40 |
+
tts_speech_token = self.llm.inference(text=text.to(self.device),
|
41 |
+
text_len=text_len.to(self.device),
|
42 |
+
prompt_text=prompt_text.to(self.device),
|
43 |
+
prompt_text_len=prompt_text_len.to(self.device),
|
44 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
45 |
+
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
46 |
+
embedding=llm_embedding.to(self.device),
|
47 |
+
beam_size=1,
|
48 |
+
sampling=25,
|
49 |
+
max_token_text_ratio=30,
|
50 |
+
min_token_text_ratio=3)
|
51 |
+
tts_mel = self.flow.inference(token=tts_speech_token,
|
52 |
+
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
53 |
+
prompt_token=flow_prompt_speech_token.to(self.device),
|
54 |
+
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
55 |
+
prompt_feat=prompt_speech_feat.to(self.device),
|
56 |
+
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
57 |
+
embedding=flow_embedding.to(self.device))
|
58 |
+
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
59 |
+
torch.cuda.empty_cache()
|
60 |
+
return {'tts_speech': tts_speech}
|
cosyvoice/dataset/__init__.py
ADDED
File without changes
|
cosyvoice/dataset/dataset.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import random
|
17 |
+
import json
|
18 |
+
import math
|
19 |
+
from functools import partial
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import IterableDataset
|
24 |
+
from cosyvoice.utils.file_utils import read_lists, read_json_lists
|
25 |
+
|
26 |
+
|
27 |
+
class Processor(IterableDataset):
|
28 |
+
|
29 |
+
def __init__(self, source, f, *args, **kw):
|
30 |
+
assert callable(f)
|
31 |
+
self.source = source
|
32 |
+
self.f = f
|
33 |
+
self.args = args
|
34 |
+
self.kw = kw
|
35 |
+
|
36 |
+
def set_epoch(self, epoch):
|
37 |
+
self.source.set_epoch(epoch)
|
38 |
+
|
39 |
+
def __iter__(self):
|
40 |
+
""" Return an iterator over the source dataset processed by the
|
41 |
+
given processor.
|
42 |
+
"""
|
43 |
+
assert self.source is not None
|
44 |
+
assert callable(self.f)
|
45 |
+
return self.f(iter(self.source), *self.args, **self.kw)
|
46 |
+
|
47 |
+
def apply(self, f):
|
48 |
+
assert callable(f)
|
49 |
+
return Processor(self, f, *self.args, **self.kw)
|
50 |
+
|
51 |
+
|
52 |
+
class DistributedSampler:
|
53 |
+
|
54 |
+
def __init__(self, shuffle=True, partition=True):
|
55 |
+
self.epoch = -1
|
56 |
+
self.update()
|
57 |
+
self.shuffle = shuffle
|
58 |
+
self.partition = partition
|
59 |
+
|
60 |
+
def update(self):
|
61 |
+
assert dist.is_available()
|
62 |
+
if dist.is_initialized():
|
63 |
+
self.rank = dist.get_rank()
|
64 |
+
self.world_size = dist.get_world_size()
|
65 |
+
else:
|
66 |
+
self.rank = 0
|
67 |
+
self.world_size = 1
|
68 |
+
worker_info = torch.utils.data.get_worker_info()
|
69 |
+
if worker_info is None:
|
70 |
+
self.worker_id = 0
|
71 |
+
self.num_workers = 1
|
72 |
+
else:
|
73 |
+
self.worker_id = worker_info.id
|
74 |
+
self.num_workers = worker_info.num_workers
|
75 |
+
return dict(rank=self.rank,
|
76 |
+
world_size=self.world_size,
|
77 |
+
worker_id=self.worker_id,
|
78 |
+
num_workers=self.num_workers)
|
79 |
+
|
80 |
+
def set_epoch(self, epoch):
|
81 |
+
self.epoch = epoch
|
82 |
+
|
83 |
+
def sample(self, data):
|
84 |
+
""" Sample data according to rank/world_size/num_workers
|
85 |
+
|
86 |
+
Args:
|
87 |
+
data(List): input data list
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
List: data list after sample
|
91 |
+
"""
|
92 |
+
data = list(range(len(data)))
|
93 |
+
# force datalist even
|
94 |
+
if self.partition:
|
95 |
+
if self.shuffle:
|
96 |
+
random.Random(self.epoch).shuffle(data)
|
97 |
+
if len(data) < self.world_size:
|
98 |
+
data = data * math.ceil(self.world_size / len(data))
|
99 |
+
data = data[:self.world_size]
|
100 |
+
data = data[self.rank::self.world_size]
|
101 |
+
if len(data) < self.num_workers:
|
102 |
+
data = data * math.ceil(self.num_workers / len(data))
|
103 |
+
data = data[:self.num_workers]
|
104 |
+
data = data[self.worker_id::self.num_workers]
|
105 |
+
return data
|
106 |
+
|
107 |
+
|
108 |
+
class DataList(IterableDataset):
|
109 |
+
|
110 |
+
def __init__(self, lists, shuffle=True, partition=True):
|
111 |
+
self.lists = lists
|
112 |
+
self.sampler = DistributedSampler(shuffle, partition)
|
113 |
+
|
114 |
+
def set_epoch(self, epoch):
|
115 |
+
self.sampler.set_epoch(epoch)
|
116 |
+
|
117 |
+
def __iter__(self):
|
118 |
+
sampler_info = self.sampler.update()
|
119 |
+
indexes = self.sampler.sample(self.lists)
|
120 |
+
for index in indexes:
|
121 |
+
data = dict(src=self.lists[index])
|
122 |
+
data.update(sampler_info)
|
123 |
+
yield data
|
124 |
+
|
125 |
+
|
126 |
+
def Dataset(data_list_file,
|
127 |
+
data_pipeline,
|
128 |
+
mode='train',
|
129 |
+
shuffle=True,
|
130 |
+
partition=True,
|
131 |
+
tts_file='',
|
132 |
+
prompt_utt2data=''):
|
133 |
+
""" Construct dataset from arguments
|
134 |
+
|
135 |
+
We have two shuffle stage in the Dataset. The first is global
|
136 |
+
shuffle at shards tar/raw file level. The second is global shuffle
|
137 |
+
at training samples level.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
data_type(str): raw/shard
|
141 |
+
tokenizer (BaseTokenizer): tokenizer to tokenize
|
142 |
+
partition(bool): whether to do data partition in terms of rank
|
143 |
+
"""
|
144 |
+
assert mode in ['train', 'inference']
|
145 |
+
lists = read_lists(data_list_file)
|
146 |
+
if mode == 'inference':
|
147 |
+
with open(tts_file) as f:
|
148 |
+
tts_data = json.load(f)
|
149 |
+
utt2lists = read_json_lists(prompt_utt2data)
|
150 |
+
# filter unnecessary file in inference mode
|
151 |
+
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
|
152 |
+
dataset = DataList(lists,
|
153 |
+
shuffle=shuffle,
|
154 |
+
partition=partition)
|
155 |
+
if mode == 'inference':
|
156 |
+
# map partial arg tts_data in inference mode
|
157 |
+
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
158 |
+
for func in data_pipeline:
|
159 |
+
dataset = Processor(dataset, func, mode=mode)
|
160 |
+
return dataset
|
cosyvoice/dataset/processor.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
|
17 |
+
import pyarrow.parquet as pq
|
18 |
+
from io import BytesIO
|
19 |
+
import torch
|
20 |
+
import torchaudio
|
21 |
+
from torch.nn.utils.rnn import pad_sequence
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
torchaudio.set_audio_backend('soundfile')
|
25 |
+
|
26 |
+
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])
|
27 |
+
|
28 |
+
|
29 |
+
def parquet_opener(data, mode='train', tts_data={}):
|
30 |
+
""" Give url or local file, return file descriptor
|
31 |
+
Inplace operation.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
data(Iterable[str]): url or local file list
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
Iterable[{src, stream}]
|
38 |
+
"""
|
39 |
+
for sample in data:
|
40 |
+
assert 'src' in sample
|
41 |
+
url = sample['src']
|
42 |
+
try:
|
43 |
+
df = pq.read_table(url).to_pandas()
|
44 |
+
for i in range(len(df)):
|
45 |
+
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
46 |
+
continue
|
47 |
+
sample.update(dict(df.loc[i]))
|
48 |
+
if mode == 'train':
|
49 |
+
# NOTE do not return sample directly, must initialize a new dict
|
50 |
+
yield {**sample}
|
51 |
+
else:
|
52 |
+
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
53 |
+
yield {**sample, 'tts_index': index, 'tts_text': text}
|
54 |
+
except Exception as ex:
|
55 |
+
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
56 |
+
|
57 |
+
def filter(data,
|
58 |
+
max_length=10240,
|
59 |
+
min_length=10,
|
60 |
+
token_max_length=200,
|
61 |
+
token_min_length=1,
|
62 |
+
min_output_input_ratio=0.0005,
|
63 |
+
max_output_input_ratio=1,
|
64 |
+
mode='train'):
|
65 |
+
""" Filter sample according to feature and label length
|
66 |
+
Inplace operation.
|
67 |
+
|
68 |
+
Args::
|
69 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
70 |
+
max_length: drop utterance which is greater than max_length(10ms)
|
71 |
+
min_length: drop utterance which is less than min_length(10ms)
|
72 |
+
token_max_length: drop utterance which is greater than
|
73 |
+
token_max_length, especially when use char unit for
|
74 |
+
english modeling
|
75 |
+
token_min_length: drop utterance which is
|
76 |
+
less than token_max_length
|
77 |
+
min_output_input_ratio: minimal ration of
|
78 |
+
token_length / feats_length(10ms)
|
79 |
+
max_output_input_ratio: maximum ration of
|
80 |
+
token_length / feats_length(10ms)
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
Iterable[{key, wav, label, sample_rate}]
|
84 |
+
"""
|
85 |
+
for sample in data:
|
86 |
+
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
87 |
+
del sample['audio_data']
|
88 |
+
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
89 |
+
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
90 |
+
if num_frames < min_length:
|
91 |
+
continue
|
92 |
+
if num_frames > max_length:
|
93 |
+
continue
|
94 |
+
if len(sample['text_token']) < token_min_length:
|
95 |
+
continue
|
96 |
+
if len(sample['text_token']) > token_max_length:
|
97 |
+
continue
|
98 |
+
if len(sample['speech_token']) == 0:
|
99 |
+
continue
|
100 |
+
if num_frames != 0:
|
101 |
+
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
102 |
+
continue
|
103 |
+
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
104 |
+
continue
|
105 |
+
yield sample
|
106 |
+
|
107 |
+
|
108 |
+
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
109 |
+
""" Resample data.
|
110 |
+
Inplace operation.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
114 |
+
resample_rate: target resample rate
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
Iterable[{key, wav, label, sample_rate}]
|
118 |
+
"""
|
119 |
+
for sample in data:
|
120 |
+
assert 'sample_rate' in sample
|
121 |
+
assert 'speech' in sample
|
122 |
+
sample_rate = sample['sample_rate']
|
123 |
+
waveform = sample['speech']
|
124 |
+
if sample_rate != resample_rate:
|
125 |
+
if sample_rate < min_sample_rate:
|
126 |
+
continue
|
127 |
+
sample['sample_rate'] = resample_rate
|
128 |
+
sample['speech'] = torchaudio.transforms.Resample(
|
129 |
+
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
130 |
+
max_val = sample['speech'].abs().max()
|
131 |
+
if max_val > 1:
|
132 |
+
sample['speech'] /= max_val
|
133 |
+
yield sample
|
134 |
+
|
135 |
+
|
136 |
+
def compute_fbank(data,
|
137 |
+
feat_extractor,
|
138 |
+
mode='train'):
|
139 |
+
""" Extract fbank
|
140 |
+
|
141 |
+
Args:
|
142 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
Iterable[{key, feat, label}]
|
146 |
+
"""
|
147 |
+
for sample in data:
|
148 |
+
assert 'sample_rate' in sample
|
149 |
+
assert 'speech' in sample
|
150 |
+
assert 'utt' in sample
|
151 |
+
assert 'text_token' in sample
|
152 |
+
waveform = sample['speech']
|
153 |
+
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
154 |
+
sample['speech_feat'] = mat
|
155 |
+
del sample['speech']
|
156 |
+
yield sample
|
157 |
+
|
158 |
+
|
159 |
+
def parse_embedding(data, normalize, mode='train'):
|
160 |
+
""" Parse utt_embedding/spk_embedding
|
161 |
+
|
162 |
+
Args:
|
163 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
Iterable[{key, feat, label}]
|
167 |
+
"""
|
168 |
+
for sample in data:
|
169 |
+
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
170 |
+
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
171 |
+
if normalize:
|
172 |
+
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
173 |
+
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
174 |
+
yield sample
|
175 |
+
|
176 |
+
|
177 |
+
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
178 |
+
""" Decode text to chars or BPE
|
179 |
+
Inplace operation
|
180 |
+
|
181 |
+
Args:
|
182 |
+
data: Iterable[{key, wav, txt, sample_rate}]
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
186 |
+
"""
|
187 |
+
tokenizer = get_tokenizer()
|
188 |
+
for sample in data:
|
189 |
+
assert 'text' in sample
|
190 |
+
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
191 |
+
if mode == 'inference':
|
192 |
+
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
|
193 |
+
yield sample
|
194 |
+
|
195 |
+
|
196 |
+
def shuffle(data, shuffle_size=10000, mode='train'):
|
197 |
+
""" Local shuffle the data
|
198 |
+
|
199 |
+
Args:
|
200 |
+
data: Iterable[{key, feat, label}]
|
201 |
+
shuffle_size: buffer size for shuffle
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
Iterable[{key, feat, label}]
|
205 |
+
"""
|
206 |
+
buf = []
|
207 |
+
for sample in data:
|
208 |
+
buf.append(sample)
|
209 |
+
if len(buf) >= shuffle_size:
|
210 |
+
random.shuffle(buf)
|
211 |
+
for x in buf:
|
212 |
+
yield x
|
213 |
+
buf = []
|
214 |
+
# The sample left over
|
215 |
+
random.shuffle(buf)
|
216 |
+
for x in buf:
|
217 |
+
yield x
|
218 |
+
|
219 |
+
|
220 |
+
def sort(data, sort_size=500, mode='train'):
|
221 |
+
""" Sort the data by feature length.
|
222 |
+
Sort is used after shuffle and before batch, so we can group
|
223 |
+
utts with similar lengths into a batch, and `sort_size` should
|
224 |
+
be less than `shuffle_size`
|
225 |
+
|
226 |
+
Args:
|
227 |
+
data: Iterable[{key, feat, label}]
|
228 |
+
sort_size: buffer size for sort
|
229 |
+
|
230 |
+
Returns:
|
231 |
+
Iterable[{key, feat, label}]
|
232 |
+
"""
|
233 |
+
|
234 |
+
buf = []
|
235 |
+
for sample in data:
|
236 |
+
buf.append(sample)
|
237 |
+
if len(buf) >= sort_size:
|
238 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
239 |
+
for x in buf:
|
240 |
+
yield x
|
241 |
+
buf = []
|
242 |
+
# The sample left over
|
243 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
244 |
+
for x in buf:
|
245 |
+
yield x
|
246 |
+
|
247 |
+
|
248 |
+
def static_batch(data, batch_size=16):
|
249 |
+
""" Static batch the data by `batch_size`
|
250 |
+
|
251 |
+
Args:
|
252 |
+
data: Iterable[{key, feat, label}]
|
253 |
+
batch_size: batch size
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
Iterable[List[{key, feat, label}]]
|
257 |
+
"""
|
258 |
+
buf = []
|
259 |
+
for sample in data:
|
260 |
+
buf.append(sample)
|
261 |
+
if len(buf) >= batch_size:
|
262 |
+
yield buf
|
263 |
+
buf = []
|
264 |
+
if len(buf) > 0:
|
265 |
+
yield buf
|
266 |
+
|
267 |
+
|
268 |
+
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
269 |
+
""" Dynamic batch the data until the total frames in batch
|
270 |
+
reach `max_frames_in_batch`
|
271 |
+
|
272 |
+
Args:
|
273 |
+
data: Iterable[{key, feat, label}]
|
274 |
+
max_frames_in_batch: max_frames in one batch
|
275 |
+
|
276 |
+
Returns:
|
277 |
+
Iterable[List[{key, feat, label}]]
|
278 |
+
"""
|
279 |
+
buf = []
|
280 |
+
longest_frames = 0
|
281 |
+
for sample in data:
|
282 |
+
assert 'speech_feat' in sample
|
283 |
+
assert isinstance(sample['speech_feat'], torch.Tensor)
|
284 |
+
new_sample_frames = sample['speech_feat'].size(0)
|
285 |
+
longest_frames = max(longest_frames, new_sample_frames)
|
286 |
+
frames_after_padding = longest_frames * (len(buf) + 1)
|
287 |
+
if frames_after_padding > max_frames_in_batch:
|
288 |
+
yield buf
|
289 |
+
buf = [sample]
|
290 |
+
longest_frames = new_sample_frames
|
291 |
+
else:
|
292 |
+
buf.append(sample)
|
293 |
+
if len(buf) > 0:
|
294 |
+
yield buf
|
295 |
+
|
296 |
+
|
297 |
+
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
298 |
+
""" Wrapper for static/dynamic batch
|
299 |
+
"""
|
300 |
+
if mode == 'inference':
|
301 |
+
return static_batch(data, 1)
|
302 |
+
else:
|
303 |
+
if batch_type == 'static':
|
304 |
+
return static_batch(data, batch_size)
|
305 |
+
elif batch_type == 'dynamic':
|
306 |
+
return dynamic_batch(data, max_frames_in_batch)
|
307 |
+
else:
|
308 |
+
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
309 |
+
|
310 |
+
|
311 |
+
def padding(data, use_spk_embedding, mode='train'):
|
312 |
+
""" Padding the data into training data
|
313 |
+
|
314 |
+
Args:
|
315 |
+
data: Iterable[List[{key, feat, label}]]
|
316 |
+
|
317 |
+
Returns:
|
318 |
+
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
319 |
+
"""
|
320 |
+
for sample in data:
|
321 |
+
assert isinstance(sample, list)
|
322 |
+
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
323 |
+
dtype=torch.int32)
|
324 |
+
order = torch.argsort(speech_feat_len, descending=True)
|
325 |
+
|
326 |
+
utts = [sample[i]['utt'] for i in order]
|
327 |
+
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
328 |
+
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
329 |
+
speech_token = pad_sequence(speech_token,
|
330 |
+
batch_first=True,
|
331 |
+
padding_value=0)
|
332 |
+
speech_feat = [sample[i]['speech_feat'] for i in order]
|
333 |
+
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
334 |
+
speech_feat = pad_sequence(speech_feat,
|
335 |
+
batch_first=True,
|
336 |
+
padding_value=0)
|
337 |
+
text = [sample[i]['text'] for i in order]
|
338 |
+
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
339 |
+
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
340 |
+
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
341 |
+
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
342 |
+
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
343 |
+
batch = {
|
344 |
+
"utts": utts,
|
345 |
+
"speech_token": speech_token,
|
346 |
+
"speech_token_len": speech_token_len,
|
347 |
+
"speech_feat": speech_feat,
|
348 |
+
"speech_feat_len": speech_feat_len,
|
349 |
+
"text": text,
|
350 |
+
"text_token": text_token,
|
351 |
+
"text_token_len": text_token_len,
|
352 |
+
"utt_embedding": utt_embedding,
|
353 |
+
"spk_embedding": spk_embedding,
|
354 |
+
}
|
355 |
+
if mode == 'inference':
|
356 |
+
tts_text = [sample[i]['tts_text'] for i in order]
|
357 |
+
tts_index = [sample[i]['tts_index'] for i in order]
|
358 |
+
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
359 |
+
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
360 |
+
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
361 |
+
batch.update({'tts_text': tts_text,
|
362 |
+
'tts_index': tts_index,
|
363 |
+
'tts_text_token': tts_text_token,
|
364 |
+
'tts_text_token_len': tts_text_token_len})
|
365 |
+
if use_spk_embedding is True:
|
366 |
+
batch["embedding"] = batch["spk_embedding"]
|
367 |
+
else:
|
368 |
+
batch["embedding"] = batch["utt_embedding"]
|
369 |
+
yield batch
|
cosyvoice/flow/decoder.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from einops import pack, rearrange, repeat
|
17 |
+
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
18 |
+
from matcha.models.components.transformer import BasicTransformerBlock
|
19 |
+
|
20 |
+
|
21 |
+
class ConditionalDecoder(nn.Module):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
in_channels,
|
25 |
+
out_channels,
|
26 |
+
channels=(256, 256),
|
27 |
+
dropout=0.05,
|
28 |
+
attention_head_dim=64,
|
29 |
+
n_blocks=1,
|
30 |
+
num_mid_blocks=2,
|
31 |
+
num_heads=4,
|
32 |
+
act_fn="snake",
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
This decoder requires an input with the same shape of the target. So, if your text content
|
36 |
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
37 |
+
"""
|
38 |
+
super().__init__()
|
39 |
+
channels = tuple(channels)
|
40 |
+
self.in_channels = in_channels
|
41 |
+
self.out_channels = out_channels
|
42 |
+
|
43 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
44 |
+
time_embed_dim = channels[0] * 4
|
45 |
+
self.time_mlp = TimestepEmbedding(
|
46 |
+
in_channels=in_channels,
|
47 |
+
time_embed_dim=time_embed_dim,
|
48 |
+
act_fn="silu",
|
49 |
+
)
|
50 |
+
self.down_blocks = nn.ModuleList([])
|
51 |
+
self.mid_blocks = nn.ModuleList([])
|
52 |
+
self.up_blocks = nn.ModuleList([])
|
53 |
+
|
54 |
+
output_channel = in_channels
|
55 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
56 |
+
input_channel = output_channel
|
57 |
+
output_channel = channels[i]
|
58 |
+
is_last = i == len(channels) - 1
|
59 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
60 |
+
transformer_blocks = nn.ModuleList(
|
61 |
+
[
|
62 |
+
BasicTransformerBlock(
|
63 |
+
dim=output_channel,
|
64 |
+
num_attention_heads=num_heads,
|
65 |
+
attention_head_dim=attention_head_dim,
|
66 |
+
dropout=dropout,
|
67 |
+
activation_fn=act_fn,
|
68 |
+
)
|
69 |
+
for _ in range(n_blocks)
|
70 |
+
]
|
71 |
+
)
|
72 |
+
downsample = (
|
73 |
+
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
74 |
+
)
|
75 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
76 |
+
|
77 |
+
for i in range(num_mid_blocks):
|
78 |
+
input_channel = channels[-1]
|
79 |
+
out_channels = channels[-1]
|
80 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
81 |
+
|
82 |
+
transformer_blocks = nn.ModuleList(
|
83 |
+
[
|
84 |
+
BasicTransformerBlock(
|
85 |
+
dim=output_channel,
|
86 |
+
num_attention_heads=num_heads,
|
87 |
+
attention_head_dim=attention_head_dim,
|
88 |
+
dropout=dropout,
|
89 |
+
activation_fn=act_fn,
|
90 |
+
)
|
91 |
+
for _ in range(n_blocks)
|
92 |
+
]
|
93 |
+
)
|
94 |
+
|
95 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
96 |
+
|
97 |
+
channels = channels[::-1] + (channels[0],)
|
98 |
+
for i in range(len(channels) - 1):
|
99 |
+
input_channel = channels[i] * 2
|
100 |
+
output_channel = channels[i + 1]
|
101 |
+
is_last = i == len(channels) - 2
|
102 |
+
resnet = ResnetBlock1D(
|
103 |
+
dim=input_channel,
|
104 |
+
dim_out=output_channel,
|
105 |
+
time_emb_dim=time_embed_dim,
|
106 |
+
)
|
107 |
+
transformer_blocks = nn.ModuleList(
|
108 |
+
[
|
109 |
+
BasicTransformerBlock(
|
110 |
+
dim=output_channel,
|
111 |
+
num_attention_heads=num_heads,
|
112 |
+
attention_head_dim=attention_head_dim,
|
113 |
+
dropout=dropout,
|
114 |
+
activation_fn=act_fn,
|
115 |
+
)
|
116 |
+
for _ in range(n_blocks)
|
117 |
+
]
|
118 |
+
)
|
119 |
+
upsample = (
|
120 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
121 |
+
if not is_last
|
122 |
+
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
123 |
+
)
|
124 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
125 |
+
self.final_block = Block1D(channels[-1], channels[-1])
|
126 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
127 |
+
self.initialize_weights()
|
128 |
+
|
129 |
+
|
130 |
+
def initialize_weights(self):
|
131 |
+
for m in self.modules():
|
132 |
+
if isinstance(m, nn.Conv1d):
|
133 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
134 |
+
if m.bias is not None:
|
135 |
+
nn.init.constant_(m.bias, 0)
|
136 |
+
elif isinstance(m, nn.GroupNorm):
|
137 |
+
nn.init.constant_(m.weight, 1)
|
138 |
+
nn.init.constant_(m.bias, 0)
|
139 |
+
elif isinstance(m, nn.Linear):
|
140 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
141 |
+
if m.bias is not None:
|
142 |
+
nn.init.constant_(m.bias, 0)
|
143 |
+
|
144 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
145 |
+
"""Forward pass of the UNet1DConditional model.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
149 |
+
mask (_type_): shape (batch_size, 1, time)
|
150 |
+
t (_type_): shape (batch_size)
|
151 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
152 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
153 |
+
|
154 |
+
Raises:
|
155 |
+
ValueError: _description_
|
156 |
+
ValueError: _description_
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
_type_: _description_
|
160 |
+
"""
|
161 |
+
|
162 |
+
t = self.time_embeddings(t)
|
163 |
+
t = self.time_mlp(t)
|
164 |
+
|
165 |
+
x = pack([x, mu], "b * t")[0]
|
166 |
+
|
167 |
+
if spks is not None:
|
168 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
169 |
+
x = pack([x, spks], "b * t")[0]
|
170 |
+
if cond is not None:
|
171 |
+
x = pack([x, cond], "b * t")[0]
|
172 |
+
|
173 |
+
hiddens = []
|
174 |
+
masks = [mask]
|
175 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
176 |
+
mask_down = masks[-1]
|
177 |
+
x = resnet(x, mask_down, t)
|
178 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
179 |
+
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
180 |
+
for transformer_block in transformer_blocks:
|
181 |
+
x = transformer_block(
|
182 |
+
hidden_states=x,
|
183 |
+
attention_mask=attn_mask,
|
184 |
+
timestep=t,
|
185 |
+
)
|
186 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
187 |
+
hiddens.append(x) # Save hidden states for skip connections
|
188 |
+
x = downsample(x * mask_down)
|
189 |
+
masks.append(mask_down[:, :, ::2])
|
190 |
+
masks = masks[:-1]
|
191 |
+
mask_mid = masks[-1]
|
192 |
+
|
193 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
194 |
+
x = resnet(x, mask_mid, t)
|
195 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
196 |
+
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
197 |
+
for transformer_block in transformer_blocks:
|
198 |
+
x = transformer_block(
|
199 |
+
hidden_states=x,
|
200 |
+
attention_mask=attn_mask,
|
201 |
+
timestep=t,
|
202 |
+
)
|
203 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
204 |
+
|
205 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
206 |
+
mask_up = masks.pop()
|
207 |
+
skip = hiddens.pop()
|
208 |
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
209 |
+
x = resnet(x, mask_up, t)
|
210 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
211 |
+
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
212 |
+
for transformer_block in transformer_blocks:
|
213 |
+
x = transformer_block(
|
214 |
+
hidden_states=x,
|
215 |
+
attention_mask=attn_mask,
|
216 |
+
timestep=t,
|
217 |
+
)
|
218 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
219 |
+
x = upsample(x * mask_up)
|
220 |
+
x = self.final_block(x, mask_up)
|
221 |
+
output = self.final_proj(x * mask_up)
|
222 |
+
return output * mask
|
cosyvoice/flow/flow.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
from typing import Dict, Optional
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from torch.nn import functional as F
|
19 |
+
from omegaconf import DictConfig
|
20 |
+
from cosyvoice.utils.mask import make_pad_mask
|
21 |
+
|
22 |
+
|
23 |
+
class MaskedDiffWithXvec(torch.nn.Module):
|
24 |
+
def __init__(self,
|
25 |
+
input_size: int = 512,
|
26 |
+
output_size: int = 80,
|
27 |
+
spk_embed_dim: int = 192,
|
28 |
+
output_type: str = "mel",
|
29 |
+
vocab_size: int = 4096,
|
30 |
+
input_frame_rate: int = 50,
|
31 |
+
only_mask_loss: bool = True,
|
32 |
+
encoder: torch.nn.Module = None,
|
33 |
+
length_regulator: torch.nn.Module = None,
|
34 |
+
decoder: torch.nn.Module = None,
|
35 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
36 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
37 |
+
super().__init__()
|
38 |
+
self.input_size = input_size
|
39 |
+
self.output_size = output_size
|
40 |
+
self.decoder_conf = decoder_conf
|
41 |
+
self.mel_feat_conf = mel_feat_conf
|
42 |
+
self.vocab_size = vocab_size
|
43 |
+
self.output_type = output_type
|
44 |
+
self.input_frame_rate = input_frame_rate
|
45 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
46 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
47 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
48 |
+
self.encoder = encoder
|
49 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
50 |
+
self.decoder = decoder
|
51 |
+
self.length_regulator = length_regulator
|
52 |
+
self.only_mask_loss = only_mask_loss
|
53 |
+
|
54 |
+
def forward(
|
55 |
+
self,
|
56 |
+
batch: dict,
|
57 |
+
device: torch.device,
|
58 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
59 |
+
token = batch['speech_token'].to(device)
|
60 |
+
token_len = batch['speech_token_len'].to(device)
|
61 |
+
feat = batch['speech_feat'].to(device)
|
62 |
+
feat_len = batch['speech_feat_len'].to(device)
|
63 |
+
embedding = batch['embedding'].to(device)
|
64 |
+
|
65 |
+
# xvec projection
|
66 |
+
embedding = F.normalize(embedding, dim=1)
|
67 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
68 |
+
|
69 |
+
# concat text and prompt_text
|
70 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
71 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
72 |
+
|
73 |
+
# text encode
|
74 |
+
h, h_lengths = self.encoder(token, token_len)
|
75 |
+
h = self.encoder_proj(h)
|
76 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
77 |
+
|
78 |
+
# get conditions
|
79 |
+
conds = torch.zeros(feat.shape, device=token.device)
|
80 |
+
conds = conds.transpose(1, 2)
|
81 |
+
|
82 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
83 |
+
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
84 |
+
loss, _ = self.decoder.compute_loss(
|
85 |
+
feat.transpose(1, 2).contiguous(),
|
86 |
+
mask.unsqueeze(1),
|
87 |
+
h.transpose(1, 2).contiguous(),
|
88 |
+
embedding,
|
89 |
+
cond=conds
|
90 |
+
)
|
91 |
+
return {'loss': loss}
|
92 |
+
|
93 |
+
@torch.inference_mode()
|
94 |
+
def inference(self,
|
95 |
+
token,
|
96 |
+
token_len,
|
97 |
+
prompt_token,
|
98 |
+
prompt_token_len,
|
99 |
+
prompt_feat,
|
100 |
+
prompt_feat_len,
|
101 |
+
embedding):
|
102 |
+
assert token.shape[0] == 1
|
103 |
+
# xvec projection
|
104 |
+
embedding = F.normalize(embedding, dim=1)
|
105 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
106 |
+
|
107 |
+
# concat text and prompt_text
|
108 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
109 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
110 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
111 |
+
|
112 |
+
# text encode
|
113 |
+
h, h_lengths = self.encoder(token, token_len)
|
114 |
+
h = self.encoder_proj(h)
|
115 |
+
feat_len = (token_len / 50 * 22050 / 256).int()
|
116 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
117 |
+
|
118 |
+
# get conditions
|
119 |
+
conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device)
|
120 |
+
if prompt_feat.shape[1] != 0:
|
121 |
+
for i, j in enumerate(prompt_feat_len):
|
122 |
+
conds[i, :j] = prompt_feat[i]
|
123 |
+
conds = conds.transpose(1, 2)
|
124 |
+
|
125 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
126 |
+
feat = self.decoder(
|
127 |
+
mu=h.transpose(1, 2).contiguous(),
|
128 |
+
mask=mask.unsqueeze(1),
|
129 |
+
spks=embedding,
|
130 |
+
cond=conds,
|
131 |
+
n_timesteps=10
|
132 |
+
)
|
133 |
+
if prompt_feat.shape[1] != 0:
|
134 |
+
feat = feat[:, :, prompt_feat.shape[1]:]
|
135 |
+
return feat
|
cosyvoice/flow/flow_matching.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from matcha.models.components.flow_matching import BASECFM
|
17 |
+
|
18 |
+
class ConditionalCFM(BASECFM):
|
19 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
20 |
+
super().__init__(
|
21 |
+
n_feats=in_channels,
|
22 |
+
cfm_params=cfm_params,
|
23 |
+
n_spks=n_spks,
|
24 |
+
spk_emb_dim=spk_emb_dim,
|
25 |
+
)
|
26 |
+
self.t_scheduler = cfm_params.t_scheduler
|
27 |
+
self.training_cfg_rate = cfm_params.training_cfg_rate
|
28 |
+
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
29 |
+
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
30 |
+
# Just change the architecture of the estimator here
|
31 |
+
self.estimator = estimator
|
32 |
+
|
33 |
+
@torch.inference_mode()
|
34 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
35 |
+
"""Forward diffusion
|
36 |
+
|
37 |
+
Args:
|
38 |
+
mu (torch.Tensor): output of encoder
|
39 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
40 |
+
mask (torch.Tensor): output_mask
|
41 |
+
shape: (batch_size, 1, mel_timesteps)
|
42 |
+
n_timesteps (int): number of diffusion steps
|
43 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
44 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
45 |
+
shape: (batch_size, spk_emb_dim)
|
46 |
+
cond: Not used but kept for future purposes
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
sample: generated mel-spectrogram
|
50 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
51 |
+
"""
|
52 |
+
z = torch.randn_like(mu) * temperature
|
53 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
54 |
+
if self.t_scheduler == 'cosine':
|
55 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
56 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
57 |
+
|
58 |
+
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
59 |
+
"""
|
60 |
+
Fixed euler solver for ODEs.
|
61 |
+
Args:
|
62 |
+
x (torch.Tensor): random noise
|
63 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
64 |
+
shape: (n_timesteps + 1,)
|
65 |
+
mu (torch.Tensor): output of encoder
|
66 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
67 |
+
mask (torch.Tensor): output_mask
|
68 |
+
shape: (batch_size, 1, mel_timesteps)
|
69 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
70 |
+
shape: (batch_size, spk_emb_dim)
|
71 |
+
cond: Not used but kept for future purposes
|
72 |
+
"""
|
73 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
74 |
+
|
75 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
76 |
+
# Or in future might add like a return_all_steps flag
|
77 |
+
sol = []
|
78 |
+
|
79 |
+
for step in range(1, len(t_span)):
|
80 |
+
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
81 |
+
# Classifier-Free Guidance inference introduced in VoiceBox
|
82 |
+
if self.inference_cfg_rate > 0:
|
83 |
+
cfg_dphi_dt = self.estimator(
|
84 |
+
x, mask,
|
85 |
+
torch.zeros_like(mu), t,
|
86 |
+
torch.zeros_like(spks) if spks is not None else None,
|
87 |
+
torch.zeros_like(cond)
|
88 |
+
)
|
89 |
+
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
|
90 |
+
self.inference_cfg_rate * cfg_dphi_dt)
|
91 |
+
x = x + dt * dphi_dt
|
92 |
+
t = t + dt
|
93 |
+
sol.append(x)
|
94 |
+
if step < len(t_span) - 1:
|
95 |
+
dt = t_span[step + 1] - t
|
96 |
+
|
97 |
+
return sol[-1]
|
98 |
+
|
99 |
+
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
100 |
+
"""Computes diffusion loss
|
101 |
+
|
102 |
+
Args:
|
103 |
+
x1 (torch.Tensor): Target
|
104 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
105 |
+
mask (torch.Tensor): target mask
|
106 |
+
shape: (batch_size, 1, mel_timesteps)
|
107 |
+
mu (torch.Tensor): output of encoder
|
108 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
109 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
110 |
+
shape: (batch_size, spk_emb_dim)
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
loss: conditional flow matching loss
|
114 |
+
y: conditional flow
|
115 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
116 |
+
"""
|
117 |
+
b, _, t = mu.shape
|
118 |
+
|
119 |
+
# random timestep
|
120 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
121 |
+
if self.t_scheduler == 'cosine':
|
122 |
+
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
123 |
+
# sample noise p(x_0)
|
124 |
+
z = torch.randn_like(x1)
|
125 |
+
|
126 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
127 |
+
u = x1 - (1 - self.sigma_min) * z
|
128 |
+
|
129 |
+
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
|
130 |
+
if self.training_cfg_rate > 0:
|
131 |
+
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
|
132 |
+
mu = mu * cfg_mask.view(-1, 1, 1)
|
133 |
+
spks = spks * cfg_mask.view(-1, 1)
|
134 |
+
cond = cond * cfg_mask.view(-1, 1, 1)
|
135 |
+
|
136 |
+
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
137 |
+
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
138 |
+
return loss, y
|
cosyvoice/flow/length_regulator.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Tuple
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn import functional as F
|
17 |
+
from cosyvoice.utils.mask import make_pad_mask
|
18 |
+
|
19 |
+
|
20 |
+
class InterpolateRegulator(nn.Module):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
channels: int,
|
24 |
+
sampling_ratios: Tuple,
|
25 |
+
out_channels: int = None,
|
26 |
+
groups: int = 1,
|
27 |
+
):
|
28 |
+
super().__init__()
|
29 |
+
self.sampling_ratios = sampling_ratios
|
30 |
+
out_channels = out_channels or channels
|
31 |
+
model = nn.ModuleList([])
|
32 |
+
if len(sampling_ratios) > 0:
|
33 |
+
for _ in sampling_ratios:
|
34 |
+
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
35 |
+
norm = nn.GroupNorm(groups, channels)
|
36 |
+
act = nn.Mish()
|
37 |
+
model.extend([module, norm, act])
|
38 |
+
model.append(
|
39 |
+
nn.Conv1d(channels, out_channels, 1, 1)
|
40 |
+
)
|
41 |
+
self.model = nn.Sequential(*model)
|
42 |
+
|
43 |
+
def forward(self, x, ylens=None):
|
44 |
+
# x in (B, T, D)
|
45 |
+
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
46 |
+
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
47 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
48 |
+
olens = ylens
|
49 |
+
return out * mask, olens
|
cosyvoice/hifigan/f0_predictor.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn.utils import weight_norm
|
17 |
+
|
18 |
+
|
19 |
+
class ConvRNNF0Predictor(nn.Module):
|
20 |
+
def __init__(self,
|
21 |
+
num_class: int = 1,
|
22 |
+
in_channels: int = 80,
|
23 |
+
cond_channels: int = 512
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
self.num_class = num_class
|
28 |
+
self.condnet = nn.Sequential(
|
29 |
+
weight_norm(
|
30 |
+
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
|
31 |
+
),
|
32 |
+
nn.ELU(),
|
33 |
+
weight_norm(
|
34 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
35 |
+
),
|
36 |
+
nn.ELU(),
|
37 |
+
weight_norm(
|
38 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
39 |
+
),
|
40 |
+
nn.ELU(),
|
41 |
+
weight_norm(
|
42 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
43 |
+
),
|
44 |
+
nn.ELU(),
|
45 |
+
weight_norm(
|
46 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
47 |
+
),
|
48 |
+
nn.ELU(),
|
49 |
+
)
|
50 |
+
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
51 |
+
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
x = self.condnet(x)
|
54 |
+
x = x.transpose(1, 2)
|
55 |
+
return torch.abs(self.classifier(x).squeeze(-1))
|
cosyvoice/hifigan/generator.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""HIFI-GAN"""
|
16 |
+
|
17 |
+
import typing as tp
|
18 |
+
import numpy as np
|
19 |
+
from scipy.signal import get_window
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.nn import Conv1d
|
24 |
+
from torch.nn import ConvTranspose1d
|
25 |
+
from torch.nn.utils import remove_weight_norm
|
26 |
+
from torch.nn.utils import weight_norm
|
27 |
+
from torch.distributions.uniform import Uniform
|
28 |
+
|
29 |
+
from cosyvoice.transformer.activation import Snake
|
30 |
+
from cosyvoice.utils.common import get_padding
|
31 |
+
from cosyvoice.utils.common import init_weights
|
32 |
+
|
33 |
+
|
34 |
+
"""hifigan based generator implementation.
|
35 |
+
|
36 |
+
This code is modified from https://github.com/jik876/hifi-gan
|
37 |
+
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
38 |
+
https://github.com/NVIDIA/BigVGAN
|
39 |
+
|
40 |
+
"""
|
41 |
+
class ResBlock(torch.nn.Module):
|
42 |
+
"""Residual block module in HiFiGAN/BigVGAN."""
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
channels: int = 512,
|
46 |
+
kernel_size: int = 3,
|
47 |
+
dilations: tp.List[int] = [1, 3, 5],
|
48 |
+
):
|
49 |
+
super(ResBlock, self).__init__()
|
50 |
+
self.convs1 = nn.ModuleList()
|
51 |
+
self.convs2 = nn.ModuleList()
|
52 |
+
|
53 |
+
for dilation in dilations:
|
54 |
+
self.convs1.append(
|
55 |
+
weight_norm(
|
56 |
+
Conv1d(
|
57 |
+
channels,
|
58 |
+
channels,
|
59 |
+
kernel_size,
|
60 |
+
1,
|
61 |
+
dilation=dilation,
|
62 |
+
padding=get_padding(kernel_size, dilation)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
self.convs2.append(
|
67 |
+
weight_norm(
|
68 |
+
Conv1d(
|
69 |
+
channels,
|
70 |
+
channels,
|
71 |
+
kernel_size,
|
72 |
+
1,
|
73 |
+
dilation=1,
|
74 |
+
padding=get_padding(kernel_size, 1)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
)
|
78 |
+
self.convs1.apply(init_weights)
|
79 |
+
self.convs2.apply(init_weights)
|
80 |
+
self.activations1 = nn.ModuleList([
|
81 |
+
Snake(channels, alpha_logscale=False)
|
82 |
+
for _ in range(len(self.convs1))
|
83 |
+
])
|
84 |
+
self.activations2 = nn.ModuleList([
|
85 |
+
Snake(channels, alpha_logscale=False)
|
86 |
+
for _ in range(len(self.convs2))
|
87 |
+
])
|
88 |
+
|
89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
90 |
+
for idx in range(len(self.convs1)):
|
91 |
+
xt = self.activations1[idx](x)
|
92 |
+
xt = self.convs1[idx](xt)
|
93 |
+
xt = self.activations2[idx](xt)
|
94 |
+
xt = self.convs2[idx](xt)
|
95 |
+
x = xt + x
|
96 |
+
return x
|
97 |
+
|
98 |
+
def remove_weight_norm(self):
|
99 |
+
for idx in range(len(self.convs1)):
|
100 |
+
remove_weight_norm(self.convs1[idx])
|
101 |
+
remove_weight_norm(self.convs2[idx])
|
102 |
+
|
103 |
+
class SineGen(torch.nn.Module):
|
104 |
+
""" Definition of sine generator
|
105 |
+
SineGen(samp_rate, harmonic_num = 0,
|
106 |
+
sine_amp = 0.1, noise_std = 0.003,
|
107 |
+
voiced_threshold = 0,
|
108 |
+
flag_for_pulse=False)
|
109 |
+
samp_rate: sampling rate in Hz
|
110 |
+
harmonic_num: number of harmonic overtones (default 0)
|
111 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
112 |
+
noise_std: std of Gaussian noise (default 0.003)
|
113 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
114 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
115 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
116 |
+
segment is always sin(np.pi) or cos(0)
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
120 |
+
sine_amp=0.1, noise_std=0.003,
|
121 |
+
voiced_threshold=0):
|
122 |
+
super(SineGen, self).__init__()
|
123 |
+
self.sine_amp = sine_amp
|
124 |
+
self.noise_std = noise_std
|
125 |
+
self.harmonic_num = harmonic_num
|
126 |
+
self.sampling_rate = samp_rate
|
127 |
+
self.voiced_threshold = voiced_threshold
|
128 |
+
|
129 |
+
def _f02uv(self, f0):
|
130 |
+
# generate uv signal
|
131 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
132 |
+
return uv
|
133 |
+
|
134 |
+
@torch.no_grad()
|
135 |
+
def forward(self, f0):
|
136 |
+
"""
|
137 |
+
:param f0: [B, 1, sample_len], Hz
|
138 |
+
:return: [B, 1, sample_len]
|
139 |
+
"""
|
140 |
+
|
141 |
+
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
142 |
+
for i in range(self.harmonic_num + 1):
|
143 |
+
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
144 |
+
|
145 |
+
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
146 |
+
u_dist = Uniform(low=-np.pi, high=np.pi)
|
147 |
+
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
148 |
+
phase_vec[:, 0, :] = 0
|
149 |
+
|
150 |
+
# generate sine waveforms
|
151 |
+
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
152 |
+
|
153 |
+
# generate uv signal
|
154 |
+
uv = self._f02uv(f0)
|
155 |
+
|
156 |
+
# noise: for unvoiced should be similar to sine_amp
|
157 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
158 |
+
# . for voiced regions is self.noise_std
|
159 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
160 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
161 |
+
|
162 |
+
# first: set the unvoiced part to 0 by uv
|
163 |
+
# then: additive noise
|
164 |
+
sine_waves = sine_waves * uv + noise
|
165 |
+
return sine_waves, uv, noise
|
166 |
+
|
167 |
+
|
168 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
169 |
+
""" SourceModule for hn-nsf
|
170 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
171 |
+
add_noise_std=0.003, voiced_threshod=0)
|
172 |
+
sampling_rate: sampling_rate in Hz
|
173 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
174 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
175 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
176 |
+
note that amplitude of noise in unvoiced is decided
|
177 |
+
by sine_amp
|
178 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
179 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
180 |
+
F0_sampled (batchsize, length, 1)
|
181 |
+
Sine_source (batchsize, length, 1)
|
182 |
+
noise_source (batchsize, length 1)
|
183 |
+
uv (batchsize, length, 1)
|
184 |
+
"""
|
185 |
+
|
186 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
187 |
+
add_noise_std=0.003, voiced_threshod=0):
|
188 |
+
super(SourceModuleHnNSF, self).__init__()
|
189 |
+
|
190 |
+
self.sine_amp = sine_amp
|
191 |
+
self.noise_std = add_noise_std
|
192 |
+
|
193 |
+
# to produce sine waveforms
|
194 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
195 |
+
sine_amp, add_noise_std, voiced_threshod)
|
196 |
+
|
197 |
+
# to merge source harmonics into a single excitation
|
198 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
199 |
+
self.l_tanh = torch.nn.Tanh()
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
"""
|
203 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
204 |
+
F0_sampled (batchsize, length, 1)
|
205 |
+
Sine_source (batchsize, length, 1)
|
206 |
+
noise_source (batchsize, length 1)
|
207 |
+
"""
|
208 |
+
# source for harmonic branch
|
209 |
+
with torch.no_grad():
|
210 |
+
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
211 |
+
sine_wavs = sine_wavs.transpose(1, 2)
|
212 |
+
uv = uv.transpose(1, 2)
|
213 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
214 |
+
|
215 |
+
# source for noise branch, in the same shape as uv
|
216 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
217 |
+
return sine_merge, noise, uv
|
218 |
+
|
219 |
+
|
220 |
+
class HiFTGenerator(nn.Module):
|
221 |
+
"""
|
222 |
+
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
223 |
+
https://arxiv.org/abs/2309.09493
|
224 |
+
"""
|
225 |
+
def __init__(
|
226 |
+
self,
|
227 |
+
in_channels: int = 80,
|
228 |
+
base_channels: int = 512,
|
229 |
+
nb_harmonics: int = 8,
|
230 |
+
sampling_rate: int = 22050,
|
231 |
+
nsf_alpha: float = 0.1,
|
232 |
+
nsf_sigma: float = 0.003,
|
233 |
+
nsf_voiced_threshold: float = 10,
|
234 |
+
upsample_rates: tp.List[int] = [8, 8],
|
235 |
+
upsample_kernel_sizes: tp.List[int] = [16, 16],
|
236 |
+
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
237 |
+
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
|
238 |
+
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
239 |
+
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
|
240 |
+
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
|
241 |
+
lrelu_slope: float = 0.1,
|
242 |
+
audio_limit: float = 0.99,
|
243 |
+
f0_predictor: torch.nn.Module = None,
|
244 |
+
):
|
245 |
+
super(HiFTGenerator, self).__init__()
|
246 |
+
|
247 |
+
self.out_channels = 1
|
248 |
+
self.nb_harmonics = nb_harmonics
|
249 |
+
self.sampling_rate = sampling_rate
|
250 |
+
self.istft_params = istft_params
|
251 |
+
self.lrelu_slope = lrelu_slope
|
252 |
+
self.audio_limit = audio_limit
|
253 |
+
|
254 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
255 |
+
self.num_upsamples = len(upsample_rates)
|
256 |
+
self.m_source = SourceModuleHnNSF(
|
257 |
+
sampling_rate=sampling_rate,
|
258 |
+
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
259 |
+
harmonic_num=nb_harmonics,
|
260 |
+
sine_amp=nsf_alpha,
|
261 |
+
add_noise_std=nsf_sigma,
|
262 |
+
voiced_threshod=nsf_voiced_threshold)
|
263 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
264 |
+
|
265 |
+
self.conv_pre = weight_norm(
|
266 |
+
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
267 |
+
)
|
268 |
+
|
269 |
+
# Up
|
270 |
+
self.ups = nn.ModuleList()
|
271 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
272 |
+
self.ups.append(
|
273 |
+
weight_norm(
|
274 |
+
ConvTranspose1d(
|
275 |
+
base_channels // (2**i),
|
276 |
+
base_channels // (2**(i + 1)),
|
277 |
+
k,
|
278 |
+
u,
|
279 |
+
padding=(k - u) // 2,
|
280 |
+
)
|
281 |
+
)
|
282 |
+
)
|
283 |
+
|
284 |
+
# Down
|
285 |
+
self.source_downs = nn.ModuleList()
|
286 |
+
self.source_resblocks = nn.ModuleList()
|
287 |
+
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
288 |
+
downsample_cum_rates = np.cumprod(downsample_rates)
|
289 |
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
|
290 |
+
source_resblock_dilation_sizes)):
|
291 |
+
if u == 1:
|
292 |
+
self.source_downs.append(
|
293 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
self.source_downs.append(
|
297 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
298 |
+
)
|
299 |
+
|
300 |
+
self.source_resblocks.append(
|
301 |
+
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
302 |
+
)
|
303 |
+
|
304 |
+
self.resblocks = nn.ModuleList()
|
305 |
+
for i in range(len(self.ups)):
|
306 |
+
ch = base_channels // (2**(i + 1))
|
307 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
308 |
+
self.resblocks.append(ResBlock(ch, k, d))
|
309 |
+
|
310 |
+
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
311 |
+
self.ups.apply(init_weights)
|
312 |
+
self.conv_post.apply(init_weights)
|
313 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
314 |
+
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
315 |
+
self.f0_predictor = f0_predictor
|
316 |
+
|
317 |
+
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
|
318 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
319 |
+
|
320 |
+
har_source, _, _ = self.m_source(f0)
|
321 |
+
return har_source.transpose(1, 2)
|
322 |
+
|
323 |
+
def _stft(self, x):
|
324 |
+
spec = torch.stft(
|
325 |
+
x,
|
326 |
+
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
327 |
+
return_complex=True)
|
328 |
+
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
329 |
+
return spec[..., 0], spec[..., 1]
|
330 |
+
|
331 |
+
def _istft(self, magnitude, phase):
|
332 |
+
magnitude = torch.clip(magnitude, max=1e2)
|
333 |
+
real = magnitude * torch.cos(phase)
|
334 |
+
img = magnitude * torch.sin(phase)
|
335 |
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
336 |
+
return inverse_transform
|
337 |
+
|
338 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
339 |
+
f0 = self.f0_predictor(x)
|
340 |
+
s = self._f02source(f0)
|
341 |
+
|
342 |
+
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
343 |
+
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
344 |
+
|
345 |
+
x = self.conv_pre(x)
|
346 |
+
for i in range(self.num_upsamples):
|
347 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
348 |
+
x = self.ups[i](x)
|
349 |
+
|
350 |
+
if i == self.num_upsamples - 1:
|
351 |
+
x = self.reflection_pad(x)
|
352 |
+
|
353 |
+
# fusion
|
354 |
+
si = self.source_downs[i](s_stft)
|
355 |
+
si = self.source_resblocks[i](si)
|
356 |
+
x = x + si
|
357 |
+
|
358 |
+
xs = None
|
359 |
+
for j in range(self.num_kernels):
|
360 |
+
if xs is None:
|
361 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
362 |
+
else:
|
363 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
364 |
+
x = xs / self.num_kernels
|
365 |
+
|
366 |
+
x = F.leaky_relu(x)
|
367 |
+
x = self.conv_post(x)
|
368 |
+
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
369 |
+
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
370 |
+
|
371 |
+
x = self._istft(magnitude, phase)
|
372 |
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
373 |
+
return x
|
374 |
+
|
375 |
+
def remove_weight_norm(self):
|
376 |
+
print('Removing weight norm...')
|
377 |
+
for l in self.ups:
|
378 |
+
remove_weight_norm(l)
|
379 |
+
for l in self.resblocks:
|
380 |
+
l.remove_weight_norm()
|
381 |
+
remove_weight_norm(self.conv_pre)
|
382 |
+
remove_weight_norm(self.conv_post)
|
383 |
+
self.source_module.remove_weight_norm()
|
384 |
+
for l in self.source_downs:
|
385 |
+
remove_weight_norm(l)
|
386 |
+
for l in self.source_resblocks:
|
387 |
+
l.remove_weight_norm()
|
388 |
+
|
389 |
+
@torch.inference_mode()
|
390 |
+
def inference(self, mel: torch.Tensor) -> torch.Tensor:
|
391 |
+
return self.forward(x=mel)
|
cosyvoice/llm/llm.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Dict, Optional, Union
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
19 |
+
from cosyvoice.utils.common import IGNORE_ID
|
20 |
+
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
21 |
+
from cosyvoice.utils.common import th_accuracy
|
22 |
+
|
23 |
+
|
24 |
+
class TransformerLM(torch.nn.Module):
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
text_encoder_input_size: int,
|
28 |
+
llm_input_size: int,
|
29 |
+
llm_output_size: int,
|
30 |
+
text_token_size: int,
|
31 |
+
speech_token_size: int,
|
32 |
+
text_encoder: torch.nn.Module,
|
33 |
+
llm: torch.nn.Module,
|
34 |
+
length_normalized_loss: bool = True,
|
35 |
+
lsm_weight: float = 0.0,
|
36 |
+
spk_embed_dim: int = 192,
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
self.llm_input_size = llm_input_size
|
40 |
+
self.speech_token_size = speech_token_size
|
41 |
+
# 1. build text token inputs related modules
|
42 |
+
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
43 |
+
self.text_encoder = text_encoder
|
44 |
+
self.text_encoder_affine_layer = nn.Linear(
|
45 |
+
self.text_encoder.output_size(),
|
46 |
+
llm_input_size
|
47 |
+
)
|
48 |
+
|
49 |
+
# 2. build speech token language model related modules
|
50 |
+
self.sos_eos = 0
|
51 |
+
self.task_id = 1
|
52 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
53 |
+
self.llm = llm
|
54 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
55 |
+
self.criterion_ce = LabelSmoothingLoss(
|
56 |
+
size=speech_token_size + 1,
|
57 |
+
padding_idx=IGNORE_ID,
|
58 |
+
smoothing=lsm_weight,
|
59 |
+
normalize_length=length_normalized_loss,
|
60 |
+
)
|
61 |
+
|
62 |
+
# 3. [Optional] build speech token related modules
|
63 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
64 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
65 |
+
|
66 |
+
def encode(
|
67 |
+
self,
|
68 |
+
text: torch.Tensor,
|
69 |
+
text_lengths: torch.Tensor,
|
70 |
+
):
|
71 |
+
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
72 |
+
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
73 |
+
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
74 |
+
return encoder_out, encoder_out_lens
|
75 |
+
|
76 |
+
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
77 |
+
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
78 |
+
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
79 |
+
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))]
|
80 |
+
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
81 |
+
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
82 |
+
return lm_input, lm_input_len
|
83 |
+
|
84 |
+
def forward(
|
85 |
+
self,
|
86 |
+
batch: dict,
|
87 |
+
device: torch.device,
|
88 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
89 |
+
"""
|
90 |
+
Args:
|
91 |
+
text: (B, L, D)
|
92 |
+
text_lengths: (B,)
|
93 |
+
audio: (B, T, N) or (B, T)
|
94 |
+
audio_lengths: (B,)
|
95 |
+
"""
|
96 |
+
text_token = batch['text_token'].to(device)
|
97 |
+
text_token_len = batch['text_token_len'].to(device)
|
98 |
+
speech_token = batch['speech_token'].to(device)
|
99 |
+
speech_token_len = batch['speech_token_len'].to(device)
|
100 |
+
embedding = batch['embedding'].to(device)
|
101 |
+
|
102 |
+
# 1. prepare llm_target
|
103 |
+
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
|
104 |
+
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
105 |
+
|
106 |
+
# 1. encode text_token
|
107 |
+
text_token = self.text_embedding(text_token)
|
108 |
+
text_token, text_token_len = self.encode(text_token, text_token_len)
|
109 |
+
|
110 |
+
# 2. embedding projection
|
111 |
+
embedding = F.normalize(embedding, dim=1)
|
112 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
113 |
+
embedding = embedding.unsqueeze(1)
|
114 |
+
|
115 |
+
# 3. eos and task_id
|
116 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
117 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
118 |
+
|
119 |
+
# 4. encode speech_token
|
120 |
+
speech_token = self.speech_embedding(speech_token)
|
121 |
+
|
122 |
+
# 5. unpad and pad
|
123 |
+
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len)
|
124 |
+
|
125 |
+
# 6. run lm forward
|
126 |
+
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
127 |
+
logits = self.llm_decoder(lm_output)
|
128 |
+
loss = self.criterion_ce(logits, lm_target)
|
129 |
+
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
130 |
+
return {'loss': loss, 'acc': acc}
|
131 |
+
|
132 |
+
def sampling_ids(
|
133 |
+
self,
|
134 |
+
weighted_scores: torch.Tensor,
|
135 |
+
sampling: Union[bool, int, float] = True,
|
136 |
+
beam_size: int = 1,
|
137 |
+
ignore_eos: bool = True,
|
138 |
+
):
|
139 |
+
while True:
|
140 |
+
prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
|
141 |
+
top_ids = prob.multinomial(beam_size, replacement=True)
|
142 |
+
top_ids = indices[top_ids]
|
143 |
+
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
144 |
+
break
|
145 |
+
return top_ids
|
146 |
+
|
147 |
+
@torch.inference_mode()
|
148 |
+
def inference(
|
149 |
+
self,
|
150 |
+
text: torch.Tensor,
|
151 |
+
text_len: torch.Tensor,
|
152 |
+
prompt_text: torch.Tensor,
|
153 |
+
prompt_text_len: torch.Tensor,
|
154 |
+
prompt_speech_token: torch.Tensor,
|
155 |
+
prompt_speech_token_len: torch.Tensor,
|
156 |
+
embedding: torch.Tensor,
|
157 |
+
beam_size: int = 1,
|
158 |
+
sampling: int = 25,
|
159 |
+
max_token_text_ratio: float = 20,
|
160 |
+
min_token_text_ratio: float = 2,
|
161 |
+
) -> torch.Tensor:
|
162 |
+
device = text.device
|
163 |
+
text = torch.concat([prompt_text, text], dim=1)
|
164 |
+
text_len += prompt_text_len
|
165 |
+
text = self.text_embedding(text)
|
166 |
+
|
167 |
+
# 1. encode text
|
168 |
+
text, text_len = self.encode(text, text_len)
|
169 |
+
|
170 |
+
# 2. encode embedding
|
171 |
+
if embedding.shape[0] != 0:
|
172 |
+
embedding = F.normalize(embedding, dim=1)
|
173 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
174 |
+
embedding = embedding.unsqueeze(dim=1)
|
175 |
+
else:
|
176 |
+
embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
|
177 |
+
|
178 |
+
# 3. concat llm_input
|
179 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
180 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
181 |
+
if prompt_speech_token_len != 0:
|
182 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
183 |
+
else:
|
184 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
|
185 |
+
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
186 |
+
|
187 |
+
# 4. cal min/max_length
|
188 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
189 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
190 |
+
|
191 |
+
# 5. step by step decode
|
192 |
+
out_tokens = []
|
193 |
+
offset = 0
|
194 |
+
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
195 |
+
for i in range(max_len):
|
196 |
+
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
|
197 |
+
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
|
198 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
199 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
|
200 |
+
if top_ids == self.speech_token_size:
|
201 |
+
break
|
202 |
+
out_tokens.append(top_ids)
|
203 |
+
offset += lm_input.size(1)
|
204 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
205 |
+
|
206 |
+
return torch.tensor([out_tokens], dtype=torch.int64, device=device)
|
cosyvoice/transformer/__init__.py
ADDED
File without changes
|
cosyvoice/transformer/activation.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
|
2 |
+
# 2020 Northwestern Polytechnical University (Pengcheng Guo)
|
3 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Swish() activation function for Conformer."""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn, sin, pow
|
21 |
+
from torch.nn import Parameter
|
22 |
+
|
23 |
+
|
24 |
+
class Swish(torch.nn.Module):
|
25 |
+
"""Construct an Swish object."""
|
26 |
+
|
27 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
28 |
+
"""Return Swish activation function."""
|
29 |
+
return x * torch.sigmoid(x)
|
30 |
+
|
31 |
+
|
32 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
33 |
+
# LICENSE is in incl_licenses directory.
|
34 |
+
class Snake(nn.Module):
|
35 |
+
'''
|
36 |
+
Implementation of a sine-based periodic activation function
|
37 |
+
Shape:
|
38 |
+
- Input: (B, C, T)
|
39 |
+
- Output: (B, C, T), same shape as the input
|
40 |
+
Parameters:
|
41 |
+
- alpha - trainable parameter
|
42 |
+
References:
|
43 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
44 |
+
https://arxiv.org/abs/2006.08195
|
45 |
+
Examples:
|
46 |
+
>>> a1 = snake(256)
|
47 |
+
>>> x = torch.randn(256)
|
48 |
+
>>> x = a1(x)
|
49 |
+
'''
|
50 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
51 |
+
'''
|
52 |
+
Initialization.
|
53 |
+
INPUT:
|
54 |
+
- in_features: shape of the input
|
55 |
+
- alpha: trainable parameter
|
56 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
57 |
+
alpha will be trained along with the rest of your model.
|
58 |
+
'''
|
59 |
+
super(Snake, self).__init__()
|
60 |
+
self.in_features = in_features
|
61 |
+
|
62 |
+
# initialize alpha
|
63 |
+
self.alpha_logscale = alpha_logscale
|
64 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
65 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
66 |
+
else: # linear scale alphas initialized to ones
|
67 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
68 |
+
|
69 |
+
self.alpha.requires_grad = alpha_trainable
|
70 |
+
|
71 |
+
self.no_div_by_zero = 0.000000001
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
'''
|
75 |
+
Forward pass of the function.
|
76 |
+
Applies the function to the input elementwise.
|
77 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
78 |
+
'''
|
79 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
80 |
+
if self.alpha_logscale:
|
81 |
+
alpha = torch.exp(alpha)
|
82 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
83 |
+
|
84 |
+
return x
|
cosyvoice/transformer/attention.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
# 2022 Xingchen Song ([email protected])
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Multi-Head Attention layer definition."""
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import Tuple
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
|
26 |
+
class MultiHeadedAttention(nn.Module):
|
27 |
+
"""Multi-Head Attention layer.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
n_head (int): The number of heads.
|
31 |
+
n_feat (int): The number of features.
|
32 |
+
dropout_rate (float): Dropout rate.
|
33 |
+
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self,
|
37 |
+
n_head: int,
|
38 |
+
n_feat: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
key_bias: bool = True):
|
41 |
+
"""Construct an MultiHeadedAttention object."""
|
42 |
+
super().__init__()
|
43 |
+
assert n_feat % n_head == 0
|
44 |
+
# We assume d_v always equals d_k
|
45 |
+
self.d_k = n_feat // n_head
|
46 |
+
self.h = n_head
|
47 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
48 |
+
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
|
49 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
50 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
51 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
52 |
+
|
53 |
+
def forward_qkv(
|
54 |
+
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
55 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
56 |
+
"""Transform query, key and value.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
60 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
61 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
torch.Tensor: Transformed query tensor, size
|
65 |
+
(#batch, n_head, time1, d_k).
|
66 |
+
torch.Tensor: Transformed key tensor, size
|
67 |
+
(#batch, n_head, time2, d_k).
|
68 |
+
torch.Tensor: Transformed value tensor, size
|
69 |
+
(#batch, n_head, time2, d_k).
|
70 |
+
|
71 |
+
"""
|
72 |
+
n_batch = query.size(0)
|
73 |
+
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
74 |
+
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
75 |
+
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
76 |
+
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
77 |
+
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
78 |
+
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
79 |
+
|
80 |
+
return q, k, v
|
81 |
+
|
82 |
+
def forward_attention(
|
83 |
+
self,
|
84 |
+
value: torch.Tensor,
|
85 |
+
scores: torch.Tensor,
|
86 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
87 |
+
) -> torch.Tensor:
|
88 |
+
"""Compute attention context vector.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
value (torch.Tensor): Transformed value, size
|
92 |
+
(#batch, n_head, time2, d_k).
|
93 |
+
scores (torch.Tensor): Attention score, size
|
94 |
+
(#batch, n_head, time1, time2).
|
95 |
+
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
96 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
torch.Tensor: Transformed value (#batch, time1, d_model)
|
100 |
+
weighted by the attention score (#batch, time1, time2).
|
101 |
+
|
102 |
+
"""
|
103 |
+
n_batch = value.size(0)
|
104 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
|
105 |
+
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
106 |
+
# 1st chunk to ease the onnx export.]
|
107 |
+
# 2. pytorch training
|
108 |
+
if mask.size(2) > 0: # time2 > 0
|
109 |
+
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
110 |
+
# For last chunk, time2 might be larger than scores.size(-1)
|
111 |
+
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
112 |
+
scores = scores.masked_fill(mask, -float('inf'))
|
113 |
+
attn = torch.softmax(scores, dim=-1).masked_fill(
|
114 |
+
mask, 0.0) # (batch, head, time1, time2)
|
115 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
|
116 |
+
# 1. onnx(16/-1, -1/-1, 16/0)
|
117 |
+
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
118 |
+
else:
|
119 |
+
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
120 |
+
|
121 |
+
p_attn = self.dropout(attn)
|
122 |
+
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
123 |
+
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
124 |
+
self.h * self.d_k)
|
125 |
+
) # (batch, time1, d_model)
|
126 |
+
|
127 |
+
return self.linear_out(x) # (batch, time1, d_model)
|
128 |
+
|
129 |
+
def forward(
|
130 |
+
self,
|
131 |
+
query: torch.Tensor,
|
132 |
+
key: torch.Tensor,
|
133 |
+
value: torch.Tensor,
|
134 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
135 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
136 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
137 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
138 |
+
"""Compute scaled dot product attention.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
142 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
143 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
144 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
145 |
+
(#batch, time1, time2).
|
146 |
+
1.When applying cross attention between decoder and encoder,
|
147 |
+
the batch padding mask for input is in (#batch, 1, T) shape.
|
148 |
+
2.When applying self attention of encoder,
|
149 |
+
the mask is in (#batch, T, T) shape.
|
150 |
+
3.When applying self attention of decoder,
|
151 |
+
the mask is in (#batch, L, L) shape.
|
152 |
+
4.If the different position in decoder see different block
|
153 |
+
of the encoder, such as Mocha, the passed in mask could be
|
154 |
+
in (#batch, L, T) shape. But there is no such case in current
|
155 |
+
CosyVoice.
|
156 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
157 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
158 |
+
and `head * d_k == size`
|
159 |
+
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
163 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
164 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
165 |
+
and `head * d_k == size`
|
166 |
+
|
167 |
+
"""
|
168 |
+
q, k, v = self.forward_qkv(query, key, value)
|
169 |
+
|
170 |
+
# NOTE(xcsong):
|
171 |
+
# when export onnx model, for 1st chunk, we feed
|
172 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
173 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
174 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
175 |
+
# and we will always do splitting and
|
176 |
+
# concatnation(this will simplify onnx export). Note that
|
177 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
178 |
+
# when export jit model, for 1st chunk, we always feed
|
179 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
180 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
181 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
182 |
+
# >>> c = torch.cat((a, b), dim=2)
|
183 |
+
# >>> torch.equal(b, c) # True
|
184 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
185 |
+
# >>> torch.equal(d[0], d[1]) # True
|
186 |
+
if cache.size(0) > 0:
|
187 |
+
key_cache, value_cache = torch.split(cache,
|
188 |
+
cache.size(-1) // 2,
|
189 |
+
dim=-1)
|
190 |
+
k = torch.cat([key_cache, k], dim=2)
|
191 |
+
v = torch.cat([value_cache, v], dim=2)
|
192 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
193 |
+
# non-trivial to calculate `next_cache_start` here.
|
194 |
+
new_cache = torch.cat((k, v), dim=-1)
|
195 |
+
|
196 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
197 |
+
return self.forward_attention(v, scores, mask), new_cache
|
198 |
+
|
199 |
+
|
200 |
+
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
201 |
+
"""Multi-Head Attention layer with relative position encoding.
|
202 |
+
Paper: https://arxiv.org/abs/1901.02860
|
203 |
+
Args:
|
204 |
+
n_head (int): The number of heads.
|
205 |
+
n_feat (int): The number of features.
|
206 |
+
dropout_rate (float): Dropout rate.
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __init__(self,
|
210 |
+
n_head: int,
|
211 |
+
n_feat: int,
|
212 |
+
dropout_rate: float,
|
213 |
+
key_bias: bool = True):
|
214 |
+
"""Construct an RelPositionMultiHeadedAttention object."""
|
215 |
+
super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
216 |
+
# linear transformation for positional encoding
|
217 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
218 |
+
# these two learnable bias are used in matrix c and matrix d
|
219 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
220 |
+
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
221 |
+
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
222 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
223 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
224 |
+
|
225 |
+
def rel_shift(self, x):
|
226 |
+
"""Compute relative positional encoding.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
230 |
+
time1 means the length of query vector.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
torch.Tensor: Output tensor.
|
234 |
+
|
235 |
+
"""
|
236 |
+
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
237 |
+
x_padded = torch.cat([zero_pad, x], dim=-1)
|
238 |
+
|
239 |
+
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
240 |
+
x = x_padded[:, :, 1:].view_as(x)[
|
241 |
+
:, :, :, : x.size(-1) // 2 + 1
|
242 |
+
] # only keep the positions from 0 to time2
|
243 |
+
return x
|
244 |
+
|
245 |
+
def forward(
|
246 |
+
self,
|
247 |
+
query: torch.Tensor,
|
248 |
+
key: torch.Tensor,
|
249 |
+
value: torch.Tensor,
|
250 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
251 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
252 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
253 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
254 |
+
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
255 |
+
Args:
|
256 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
257 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
258 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
259 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
260 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
261 |
+
pos_emb (torch.Tensor): Positional embedding tensor
|
262 |
+
(#batch, time2, size).
|
263 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
264 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
265 |
+
and `head * d_k == size`
|
266 |
+
Returns:
|
267 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
268 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
269 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
270 |
+
and `head * d_k == size`
|
271 |
+
"""
|
272 |
+
q, k, v = self.forward_qkv(query, key, value)
|
273 |
+
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
274 |
+
|
275 |
+
# NOTE(xcsong):
|
276 |
+
# when export onnx model, for 1st chunk, we feed
|
277 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
278 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
279 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
280 |
+
# and we will always do splitting and
|
281 |
+
# concatnation(this will simplify onnx export). Note that
|
282 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
283 |
+
# when export jit model, for 1st chunk, we always feed
|
284 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
285 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
286 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
287 |
+
# >>> c = torch.cat((a, b), dim=2)
|
288 |
+
# >>> torch.equal(b, c) # True
|
289 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
290 |
+
# >>> torch.equal(d[0], d[1]) # True
|
291 |
+
if cache.size(0) > 0:
|
292 |
+
key_cache, value_cache = torch.split(cache,
|
293 |
+
cache.size(-1) // 2,
|
294 |
+
dim=-1)
|
295 |
+
k = torch.cat([key_cache, k], dim=2)
|
296 |
+
v = torch.cat([value_cache, v], dim=2)
|
297 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
298 |
+
# non-trivial to calculate `next_cache_start` here.
|
299 |
+
new_cache = torch.cat((k, v), dim=-1)
|
300 |
+
|
301 |
+
n_batch_pos = pos_emb.size(0)
|
302 |
+
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
303 |
+
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
304 |
+
|
305 |
+
# (batch, head, time1, d_k)
|
306 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
307 |
+
# (batch, head, time1, d_k)
|
308 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
309 |
+
|
310 |
+
# compute attention score
|
311 |
+
# first compute matrix a and matrix c
|
312 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
313 |
+
# (batch, head, time1, time2)
|
314 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
315 |
+
|
316 |
+
# compute matrix b and matrix d
|
317 |
+
# (batch, head, time1, time2)
|
318 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
319 |
+
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
|
320 |
+
if matrix_ac.shape != matrix_bd.shape:
|
321 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
322 |
+
|
323 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
324 |
+
self.d_k) # (batch, head, time1, time2)
|
325 |
+
|
326 |
+
return self.forward_attention(v, scores, mask), new_cache
|
cosyvoice/transformer/convolution.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""ConvolutionModule definition."""
|
17 |
+
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
|
24 |
+
class ConvolutionModule(nn.Module):
|
25 |
+
"""ConvolutionModule in Conformer model."""
|
26 |
+
|
27 |
+
def __init__(self,
|
28 |
+
channels: int,
|
29 |
+
kernel_size: int = 15,
|
30 |
+
activation: nn.Module = nn.ReLU(),
|
31 |
+
norm: str = "batch_norm",
|
32 |
+
causal: bool = False,
|
33 |
+
bias: bool = True):
|
34 |
+
"""Construct an ConvolutionModule object.
|
35 |
+
Args:
|
36 |
+
channels (int): The number of channels of conv layers.
|
37 |
+
kernel_size (int): Kernel size of conv layers.
|
38 |
+
causal (int): Whether use causal convolution or not
|
39 |
+
"""
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.pointwise_conv1 = nn.Conv1d(
|
43 |
+
channels,
|
44 |
+
2 * channels,
|
45 |
+
kernel_size=1,
|
46 |
+
stride=1,
|
47 |
+
padding=0,
|
48 |
+
bias=bias,
|
49 |
+
)
|
50 |
+
# self.lorder is used to distinguish if it's a causal convolution,
|
51 |
+
# if self.lorder > 0: it's a causal convolution, the input will be
|
52 |
+
# padded with self.lorder frames on the left in forward.
|
53 |
+
# else: it's a symmetrical convolution
|
54 |
+
if causal:
|
55 |
+
padding = 0
|
56 |
+
self.lorder = kernel_size - 1
|
57 |
+
else:
|
58 |
+
# kernel_size should be an odd number for none causal convolution
|
59 |
+
assert (kernel_size - 1) % 2 == 0
|
60 |
+
padding = (kernel_size - 1) // 2
|
61 |
+
self.lorder = 0
|
62 |
+
self.depthwise_conv = nn.Conv1d(
|
63 |
+
channels,
|
64 |
+
channels,
|
65 |
+
kernel_size,
|
66 |
+
stride=1,
|
67 |
+
padding=padding,
|
68 |
+
groups=channels,
|
69 |
+
bias=bias,
|
70 |
+
)
|
71 |
+
|
72 |
+
assert norm in ['batch_norm', 'layer_norm']
|
73 |
+
if norm == "batch_norm":
|
74 |
+
self.use_layer_norm = False
|
75 |
+
self.norm = nn.BatchNorm1d(channels)
|
76 |
+
else:
|
77 |
+
self.use_layer_norm = True
|
78 |
+
self.norm = nn.LayerNorm(channels)
|
79 |
+
|
80 |
+
self.pointwise_conv2 = nn.Conv1d(
|
81 |
+
channels,
|
82 |
+
channels,
|
83 |
+
kernel_size=1,
|
84 |
+
stride=1,
|
85 |
+
padding=0,
|
86 |
+
bias=bias,
|
87 |
+
)
|
88 |
+
self.activation = activation
|
89 |
+
|
90 |
+
def forward(
|
91 |
+
self,
|
92 |
+
x: torch.Tensor,
|
93 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
94 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0)),
|
95 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
96 |
+
"""Compute convolution module.
|
97 |
+
Args:
|
98 |
+
x (torch.Tensor): Input tensor (#batch, time, channels).
|
99 |
+
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
|
100 |
+
(0, 0, 0) means fake mask.
|
101 |
+
cache (torch.Tensor): left context cache, it is only
|
102 |
+
used in causal convolution (#batch, channels, cache_t),
|
103 |
+
(0, 0, 0) meas fake cache.
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: Output tensor (#batch, time, channels).
|
106 |
+
"""
|
107 |
+
# exchange the temporal dimension and the feature dimension
|
108 |
+
x = x.transpose(1, 2) # (#batch, channels, time)
|
109 |
+
|
110 |
+
# mask batch padding
|
111 |
+
if mask_pad.size(2) > 0: # time > 0
|
112 |
+
x.masked_fill_(~mask_pad, 0.0)
|
113 |
+
|
114 |
+
if self.lorder > 0:
|
115 |
+
if cache.size(2) == 0: # cache_t == 0
|
116 |
+
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
|
117 |
+
else:
|
118 |
+
assert cache.size(0) == x.size(0) # equal batch
|
119 |
+
assert cache.size(1) == x.size(1) # equal channel
|
120 |
+
x = torch.cat((cache, x), dim=2)
|
121 |
+
assert (x.size(2) > self.lorder)
|
122 |
+
new_cache = x[:, :, -self.lorder:]
|
123 |
+
else:
|
124 |
+
# It's better we just return None if no cache is required,
|
125 |
+
# However, for JIT export, here we just fake one tensor instead of
|
126 |
+
# None.
|
127 |
+
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
128 |
+
|
129 |
+
# GLU mechanism
|
130 |
+
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
131 |
+
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
132 |
+
|
133 |
+
# 1D Depthwise Conv
|
134 |
+
x = self.depthwise_conv(x)
|
135 |
+
if self.use_layer_norm:
|
136 |
+
x = x.transpose(1, 2)
|
137 |
+
x = self.activation(self.norm(x))
|
138 |
+
if self.use_layer_norm:
|
139 |
+
x = x.transpose(1, 2)
|
140 |
+
x = self.pointwise_conv2(x)
|
141 |
+
# mask batch padding
|
142 |
+
if mask_pad.size(2) > 0: # time > 0
|
143 |
+
x.masked_fill_(~mask_pad, 0.0)
|
144 |
+
|
145 |
+
return x.transpose(1, 2), new_cache
|
cosyvoice/transformer/decoder.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Decoder definition."""
|
17 |
+
from typing import Tuple, List, Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint as ckpt
|
21 |
+
import logging
|
22 |
+
|
23 |
+
from cosyvoice.transformer.decoder_layer import DecoderLayer
|
24 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
25 |
+
from cosyvoice.utils.class_utils import (
|
26 |
+
COSYVOICE_EMB_CLASSES,
|
27 |
+
COSYVOICE_ATTENTION_CLASSES,
|
28 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
29 |
+
)
|
30 |
+
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)
|
31 |
+
|
32 |
+
|
33 |
+
class TransformerDecoder(torch.nn.Module):
|
34 |
+
"""Base class of Transfomer decoder module.
|
35 |
+
Args:
|
36 |
+
vocab_size: output dim
|
37 |
+
encoder_output_size: dimension of attention
|
38 |
+
attention_heads: the number of heads of multi head attention
|
39 |
+
linear_units: the hidden units number of position-wise feedforward
|
40 |
+
num_blocks: the number of decoder blocks
|
41 |
+
dropout_rate: dropout rate
|
42 |
+
self_attention_dropout_rate: dropout rate for attention
|
43 |
+
input_layer: input layer type
|
44 |
+
use_output_layer: whether to use output layer
|
45 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
46 |
+
normalize_before:
|
47 |
+
True: use layer_norm before each sub-block of a layer.
|
48 |
+
False: use layer_norm after each sub-block of a layer.
|
49 |
+
src_attention: if false, encoder-decoder cross attention is not
|
50 |
+
applied, such as CIF model
|
51 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
52 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
53 |
+
checkpointed segment during backward.
|
54 |
+
tie_word_embedding: Tie or clone module weights depending of whether we are
|
55 |
+
using TorchScript or not
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
vocab_size: int,
|
61 |
+
encoder_output_size: int,
|
62 |
+
attention_heads: int = 4,
|
63 |
+
linear_units: int = 2048,
|
64 |
+
num_blocks: int = 6,
|
65 |
+
dropout_rate: float = 0.1,
|
66 |
+
positional_dropout_rate: float = 0.1,
|
67 |
+
self_attention_dropout_rate: float = 0.0,
|
68 |
+
src_attention_dropout_rate: float = 0.0,
|
69 |
+
input_layer: str = "embed",
|
70 |
+
use_output_layer: bool = True,
|
71 |
+
normalize_before: bool = True,
|
72 |
+
src_attention: bool = True,
|
73 |
+
key_bias: bool = True,
|
74 |
+
activation_type: str = "relu",
|
75 |
+
gradient_checkpointing: bool = False,
|
76 |
+
tie_word_embedding: bool = False,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
attention_dim = encoder_output_size
|
80 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
81 |
+
|
82 |
+
self.embed = torch.nn.Sequential(
|
83 |
+
torch.nn.Identity() if input_layer == "no_pos" else
|
84 |
+
torch.nn.Embedding(vocab_size, attention_dim),
|
85 |
+
COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
|
86 |
+
positional_dropout_rate),
|
87 |
+
)
|
88 |
+
|
89 |
+
self.normalize_before = normalize_before
|
90 |
+
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
|
91 |
+
self.use_output_layer = use_output_layer
|
92 |
+
if use_output_layer:
|
93 |
+
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
|
94 |
+
else:
|
95 |
+
self.output_layer = torch.nn.Identity()
|
96 |
+
self.num_blocks = num_blocks
|
97 |
+
self.decoders = torch.nn.ModuleList([
|
98 |
+
DecoderLayer(
|
99 |
+
attention_dim,
|
100 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
101 |
+
attention_heads, attention_dim,
|
102 |
+
self_attention_dropout_rate, key_bias),
|
103 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
104 |
+
attention_heads, attention_dim, src_attention_dropout_rate,
|
105 |
+
key_bias) if src_attention else None,
|
106 |
+
PositionwiseFeedForward(attention_dim, linear_units,
|
107 |
+
dropout_rate, activation),
|
108 |
+
dropout_rate,
|
109 |
+
normalize_before,
|
110 |
+
) for _ in range(self.num_blocks)
|
111 |
+
])
|
112 |
+
|
113 |
+
self.gradient_checkpointing = gradient_checkpointing
|
114 |
+
self.tie_word_embedding = tie_word_embedding
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
memory: torch.Tensor,
|
119 |
+
memory_mask: torch.Tensor,
|
120 |
+
ys_in_pad: torch.Tensor,
|
121 |
+
ys_in_lens: torch.Tensor,
|
122 |
+
r_ys_in_pad: torch.Tensor = torch.empty(0),
|
123 |
+
reverse_weight: float = 0.0,
|
124 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
125 |
+
"""Forward decoder.
|
126 |
+
Args:
|
127 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
128 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
129 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
130 |
+
ys_in_lens: input lengths of this batch (batch)
|
131 |
+
r_ys_in_pad: not used in transformer decoder, in order to unify api
|
132 |
+
with bidirectional decoder
|
133 |
+
reverse_weight: not used in transformer decoder, in order to unify
|
134 |
+
api with bidirectional decode
|
135 |
+
Returns:
|
136 |
+
(tuple): tuple containing:
|
137 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
138 |
+
vocab_size) if use_output_layer is True,
|
139 |
+
torch.tensor(0.0), in order to unify api with bidirectional decoder
|
140 |
+
olens: (batch, )
|
141 |
+
NOTE(xcsong):
|
142 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
143 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
144 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
145 |
+
"""
|
146 |
+
tgt = ys_in_pad
|
147 |
+
maxlen = tgt.size(1)
|
148 |
+
# tgt_mask: (B, 1, L)
|
149 |
+
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
|
150 |
+
tgt_mask = tgt_mask.to(tgt.device)
|
151 |
+
# m: (1, L, L)
|
152 |
+
m = subsequent_mask(tgt_mask.size(-1),
|
153 |
+
device=tgt_mask.device).unsqueeze(0)
|
154 |
+
# tgt_mask: (B, L, L)
|
155 |
+
tgt_mask = tgt_mask & m
|
156 |
+
x, _ = self.embed(tgt)
|
157 |
+
if self.gradient_checkpointing and self.training:
|
158 |
+
x = self.forward_layers_checkpointed(x, tgt_mask, memory,
|
159 |
+
memory_mask)
|
160 |
+
else:
|
161 |
+
x = self.forward_layers(x, tgt_mask, memory, memory_mask)
|
162 |
+
if self.normalize_before:
|
163 |
+
x = self.after_norm(x)
|
164 |
+
if self.use_output_layer:
|
165 |
+
x = self.output_layer(x)
|
166 |
+
olens = tgt_mask.sum(1)
|
167 |
+
return x, torch.tensor(0.0), olens
|
168 |
+
|
169 |
+
def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
|
170 |
+
memory: torch.Tensor,
|
171 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
172 |
+
for layer in self.decoders:
|
173 |
+
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
|
174 |
+
memory_mask)
|
175 |
+
return x
|
176 |
+
|
177 |
+
@torch.jit.ignore(drop=True)
|
178 |
+
def forward_layers_checkpointed(self, x: torch.Tensor,
|
179 |
+
tgt_mask: torch.Tensor,
|
180 |
+
memory: torch.Tensor,
|
181 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
182 |
+
for layer in self.decoders:
|
183 |
+
x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
|
184 |
+
layer.__call__, x, tgt_mask, memory, memory_mask)
|
185 |
+
return x
|
186 |
+
|
187 |
+
def forward_one_step(
|
188 |
+
self,
|
189 |
+
memory: torch.Tensor,
|
190 |
+
memory_mask: torch.Tensor,
|
191 |
+
tgt: torch.Tensor,
|
192 |
+
tgt_mask: torch.Tensor,
|
193 |
+
cache: Optional[List[torch.Tensor]] = None,
|
194 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
195 |
+
"""Forward one step.
|
196 |
+
This is only used for decoding.
|
197 |
+
Args:
|
198 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
199 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
200 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
201 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
202 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
203 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
204 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
205 |
+
Returns:
|
206 |
+
y, cache: NN output value and cache per `self.decoders`.
|
207 |
+
y.shape` is (batch, maxlen_out, token)
|
208 |
+
"""
|
209 |
+
x, _ = self.embed(tgt)
|
210 |
+
new_cache = []
|
211 |
+
for i, decoder in enumerate(self.decoders):
|
212 |
+
if cache is None:
|
213 |
+
c = None
|
214 |
+
else:
|
215 |
+
c = cache[i]
|
216 |
+
x, tgt_mask, memory, memory_mask = decoder(x,
|
217 |
+
tgt_mask,
|
218 |
+
memory,
|
219 |
+
memory_mask,
|
220 |
+
cache=c)
|
221 |
+
new_cache.append(x)
|
222 |
+
if self.normalize_before:
|
223 |
+
y = self.after_norm(x[:, -1])
|
224 |
+
else:
|
225 |
+
y = x[:, -1]
|
226 |
+
if self.use_output_layer:
|
227 |
+
y = torch.log_softmax(self.output_layer(y), dim=-1)
|
228 |
+
return y, new_cache
|
229 |
+
|
230 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
231 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
232 |
+
depending of whether we are using TorchScript or not"""
|
233 |
+
if not self.use_output_layer:
|
234 |
+
return
|
235 |
+
if jit_mode:
|
236 |
+
logging.info("clone emb.weight to output.weight")
|
237 |
+
self.output_layer.weight = torch.nn.Parameter(
|
238 |
+
self.embed[0].weight.clone())
|
239 |
+
else:
|
240 |
+
logging.info("tie emb.weight with output.weight")
|
241 |
+
self.output_layer.weight = self.embed[0].weight
|
242 |
+
|
243 |
+
if getattr(self.output_layer, "bias", None) is not None:
|
244 |
+
self.output_layer.bias.data = torch.nn.functional.pad(
|
245 |
+
self.output_layer.bias.data,
|
246 |
+
(
|
247 |
+
0,
|
248 |
+
self.output_layer.weight.shape[0] -
|
249 |
+
self.output_layer.bias.shape[0],
|
250 |
+
),
|
251 |
+
"constant",
|
252 |
+
0,
|
253 |
+
)
|
254 |
+
|
255 |
+
|
256 |
+
class BiTransformerDecoder(torch.nn.Module):
|
257 |
+
"""Base class of Transfomer decoder module.
|
258 |
+
Args:
|
259 |
+
vocab_size: output dim
|
260 |
+
encoder_output_size: dimension of attention
|
261 |
+
attention_heads: the number of heads of multi head attention
|
262 |
+
linear_units: the hidden units number of position-wise feedforward
|
263 |
+
num_blocks: the number of decoder blocks
|
264 |
+
r_num_blocks: the number of right to left decoder blocks
|
265 |
+
dropout_rate: dropout rate
|
266 |
+
self_attention_dropout_rate: dropout rate for attention
|
267 |
+
input_layer: input layer type
|
268 |
+
use_output_layer: whether to use output layer
|
269 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
270 |
+
normalize_before:
|
271 |
+
True: use layer_norm before each sub-block of a layer.
|
272 |
+
False: use layer_norm after each sub-block of a layer.
|
273 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
vocab_size: int,
|
279 |
+
encoder_output_size: int,
|
280 |
+
attention_heads: int = 4,
|
281 |
+
linear_units: int = 2048,
|
282 |
+
num_blocks: int = 6,
|
283 |
+
r_num_blocks: int = 0,
|
284 |
+
dropout_rate: float = 0.1,
|
285 |
+
positional_dropout_rate: float = 0.1,
|
286 |
+
self_attention_dropout_rate: float = 0.0,
|
287 |
+
src_attention_dropout_rate: float = 0.0,
|
288 |
+
input_layer: str = "embed",
|
289 |
+
use_output_layer: bool = True,
|
290 |
+
normalize_before: bool = True,
|
291 |
+
key_bias: bool = True,
|
292 |
+
gradient_checkpointing: bool = False,
|
293 |
+
tie_word_embedding: bool = False,
|
294 |
+
):
|
295 |
+
|
296 |
+
super().__init__()
|
297 |
+
self.tie_word_embedding = tie_word_embedding
|
298 |
+
self.left_decoder = TransformerDecoder(
|
299 |
+
vocab_size,
|
300 |
+
encoder_output_size,
|
301 |
+
attention_heads,
|
302 |
+
linear_units,
|
303 |
+
num_blocks,
|
304 |
+
dropout_rate,
|
305 |
+
positional_dropout_rate,
|
306 |
+
self_attention_dropout_rate,
|
307 |
+
src_attention_dropout_rate,
|
308 |
+
input_layer,
|
309 |
+
use_output_layer,
|
310 |
+
normalize_before,
|
311 |
+
key_bias=key_bias,
|
312 |
+
gradient_checkpointing=gradient_checkpointing,
|
313 |
+
tie_word_embedding=tie_word_embedding)
|
314 |
+
|
315 |
+
self.right_decoder = TransformerDecoder(
|
316 |
+
vocab_size,
|
317 |
+
encoder_output_size,
|
318 |
+
attention_heads,
|
319 |
+
linear_units,
|
320 |
+
r_num_blocks,
|
321 |
+
dropout_rate,
|
322 |
+
positional_dropout_rate,
|
323 |
+
self_attention_dropout_rate,
|
324 |
+
src_attention_dropout_rate,
|
325 |
+
input_layer,
|
326 |
+
use_output_layer,
|
327 |
+
normalize_before,
|
328 |
+
key_bias=key_bias,
|
329 |
+
gradient_checkpointing=gradient_checkpointing,
|
330 |
+
tie_word_embedding=tie_word_embedding)
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
memory: torch.Tensor,
|
335 |
+
memory_mask: torch.Tensor,
|
336 |
+
ys_in_pad: torch.Tensor,
|
337 |
+
ys_in_lens: torch.Tensor,
|
338 |
+
r_ys_in_pad: torch.Tensor,
|
339 |
+
reverse_weight: float = 0.0,
|
340 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
341 |
+
"""Forward decoder.
|
342 |
+
Args:
|
343 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
344 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
345 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
346 |
+
ys_in_lens: input lengths of this batch (batch)
|
347 |
+
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
|
348 |
+
used for right to left decoder
|
349 |
+
reverse_weight: used for right to left decoder
|
350 |
+
Returns:
|
351 |
+
(tuple): tuple containing:
|
352 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
353 |
+
vocab_size) if use_output_layer is True,
|
354 |
+
r_x: x: decoded token score (right to left decoder)
|
355 |
+
before softmax (batch, maxlen_out, vocab_size)
|
356 |
+
if use_output_layer is True,
|
357 |
+
olens: (batch, )
|
358 |
+
"""
|
359 |
+
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
|
360 |
+
ys_in_lens)
|
361 |
+
r_x = torch.tensor(0.0)
|
362 |
+
if reverse_weight > 0.0:
|
363 |
+
r_x, _, olens = self.right_decoder(memory, memory_mask,
|
364 |
+
r_ys_in_pad, ys_in_lens)
|
365 |
+
return l_x, r_x, olens
|
366 |
+
|
367 |
+
def forward_one_step(
|
368 |
+
self,
|
369 |
+
memory: torch.Tensor,
|
370 |
+
memory_mask: torch.Tensor,
|
371 |
+
tgt: torch.Tensor,
|
372 |
+
tgt_mask: torch.Tensor,
|
373 |
+
cache: Optional[List[torch.Tensor]] = None,
|
374 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
375 |
+
"""Forward one step.
|
376 |
+
This is only used for decoding.
|
377 |
+
Args:
|
378 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
379 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
380 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
381 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
382 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
383 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
384 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
385 |
+
Returns:
|
386 |
+
y, cache: NN output value and cache per `self.decoders`.
|
387 |
+
y.shape` is (batch, maxlen_out, token)
|
388 |
+
"""
|
389 |
+
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
|
390 |
+
tgt_mask, cache)
|
391 |
+
|
392 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
393 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
394 |
+
depending of whether we are using TorchScript or not"""
|
395 |
+
self.left_decoder.tie_or_clone_weights(jit_mode)
|
396 |
+
self.right_decoder.tie_or_clone_weights(jit_mode)
|
cosyvoice/transformer/decoder_layer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Decoder self-attention layer definition."""
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
|
22 |
+
class DecoderLayer(nn.Module):
|
23 |
+
"""Single decoder layer module.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
size (int): Input dimension.
|
27 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
28 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
29 |
+
src_attn (torch.nn.Module): Inter-attention module instance.
|
30 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
31 |
+
If `None` is passed, Inter-attention is not used, such as
|
32 |
+
CIF, GPT, and other decoder only model.
|
33 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
34 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
35 |
+
dropout_rate (float): Dropout rate.
|
36 |
+
normalize_before (bool):
|
37 |
+
True: use layer_norm before each sub-block.
|
38 |
+
False: to use layer_norm after each sub-block.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
size: int,
|
44 |
+
self_attn: nn.Module,
|
45 |
+
src_attn: Optional[nn.Module],
|
46 |
+
feed_forward: nn.Module,
|
47 |
+
dropout_rate: float,
|
48 |
+
normalize_before: bool = True,
|
49 |
+
):
|
50 |
+
"""Construct an DecoderLayer object."""
|
51 |
+
super().__init__()
|
52 |
+
self.size = size
|
53 |
+
self.self_attn = self_attn
|
54 |
+
self.src_attn = src_attn
|
55 |
+
self.feed_forward = feed_forward
|
56 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
57 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
58 |
+
self.norm3 = nn.LayerNorm(size, eps=1e-5)
|
59 |
+
self.dropout = nn.Dropout(dropout_rate)
|
60 |
+
self.normalize_before = normalize_before
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
tgt: torch.Tensor,
|
65 |
+
tgt_mask: torch.Tensor,
|
66 |
+
memory: torch.Tensor,
|
67 |
+
memory_mask: torch.Tensor,
|
68 |
+
cache: Optional[torch.Tensor] = None
|
69 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
70 |
+
"""Compute decoded features.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
74 |
+
tgt_mask (torch.Tensor): Mask for input tensor
|
75 |
+
(#batch, maxlen_out).
|
76 |
+
memory (torch.Tensor): Encoded memory
|
77 |
+
(#batch, maxlen_in, size).
|
78 |
+
memory_mask (torch.Tensor): Encoded memory mask
|
79 |
+
(#batch, maxlen_in).
|
80 |
+
cache (torch.Tensor): cached tensors.
|
81 |
+
(#batch, maxlen_out - 1, size).
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Output tensor (#batch, maxlen_out, size).
|
85 |
+
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
86 |
+
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
87 |
+
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = tgt
|
91 |
+
if self.normalize_before:
|
92 |
+
tgt = self.norm1(tgt)
|
93 |
+
|
94 |
+
if cache is None:
|
95 |
+
tgt_q = tgt
|
96 |
+
tgt_q_mask = tgt_mask
|
97 |
+
else:
|
98 |
+
# compute only the last frame query keeping dim: max_time_out -> 1
|
99 |
+
assert cache.shape == (
|
100 |
+
tgt.shape[0],
|
101 |
+
tgt.shape[1] - 1,
|
102 |
+
self.size,
|
103 |
+
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
104 |
+
tgt_q = tgt[:, -1:, :]
|
105 |
+
residual = residual[:, -1:, :]
|
106 |
+
tgt_q_mask = tgt_mask[:, -1:, :]
|
107 |
+
|
108 |
+
x = residual + self.dropout(
|
109 |
+
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
|
110 |
+
if not self.normalize_before:
|
111 |
+
x = self.norm1(x)
|
112 |
+
|
113 |
+
if self.src_attn is not None:
|
114 |
+
residual = x
|
115 |
+
if self.normalize_before:
|
116 |
+
x = self.norm2(x)
|
117 |
+
x = residual + self.dropout(
|
118 |
+
self.src_attn(x, memory, memory, memory_mask)[0])
|
119 |
+
if not self.normalize_before:
|
120 |
+
x = self.norm2(x)
|
121 |
+
|
122 |
+
residual = x
|
123 |
+
if self.normalize_before:
|
124 |
+
x = self.norm3(x)
|
125 |
+
x = residual + self.dropout(self.feed_forward(x))
|
126 |
+
if not self.normalize_before:
|
127 |
+
x = self.norm3(x)
|
128 |
+
|
129 |
+
if cache is not None:
|
130 |
+
x = torch.cat([cache, x], dim=1)
|
131 |
+
|
132 |
+
return x, tgt_mask, memory, memory_mask
|
cosyvoice/transformer/embedding.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Positonal Encoding Module."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
|
26 |
+
class PositionalEncoding(torch.nn.Module):
|
27 |
+
"""Positional encoding.
|
28 |
+
|
29 |
+
:param int d_model: embedding dim
|
30 |
+
:param float dropout_rate: dropout rate
|
31 |
+
:param int max_len: maximum input length
|
32 |
+
|
33 |
+
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
|
34 |
+
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self,
|
38 |
+
d_model: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
max_len: int = 5000,
|
41 |
+
reverse: bool = False):
|
42 |
+
"""Construct an PositionalEncoding object."""
|
43 |
+
super().__init__()
|
44 |
+
self.d_model = d_model
|
45 |
+
self.xscale = math.sqrt(self.d_model)
|
46 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
47 |
+
self.max_len = max_len
|
48 |
+
|
49 |
+
self.pe = torch.zeros(self.max_len, self.d_model)
|
50 |
+
position = torch.arange(0, self.max_len,
|
51 |
+
dtype=torch.float32).unsqueeze(1)
|
52 |
+
div_term = torch.exp(
|
53 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32) *
|
54 |
+
-(math.log(10000.0) / self.d_model))
|
55 |
+
self.pe[:, 0::2] = torch.sin(position * div_term)
|
56 |
+
self.pe[:, 1::2] = torch.cos(position * div_term)
|
57 |
+
self.pe = self.pe.unsqueeze(0)
|
58 |
+
|
59 |
+
def forward(self,
|
60 |
+
x: torch.Tensor,
|
61 |
+
offset: Union[int, torch.Tensor] = 0) \
|
62 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
63 |
+
"""Add positional encoding.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
x (torch.Tensor): Input. Its shape is (batch, time, ...)
|
67 |
+
offset (int, torch.tensor): position offset
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
|
71 |
+
torch.Tensor: for compatibility to RelPositionalEncoding
|
72 |
+
"""
|
73 |
+
|
74 |
+
self.pe = self.pe.to(x.device)
|
75 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
76 |
+
x = x * self.xscale + pos_emb
|
77 |
+
return self.dropout(x), self.dropout(pos_emb)
|
78 |
+
|
79 |
+
def position_encoding(self,
|
80 |
+
offset: Union[int, torch.Tensor],
|
81 |
+
size: int,
|
82 |
+
apply_dropout: bool = True) -> torch.Tensor:
|
83 |
+
""" For getting encoding in a streaming fashion
|
84 |
+
|
85 |
+
Attention!!!!!
|
86 |
+
we apply dropout only once at the whole utterance level in a none
|
87 |
+
streaming way, but will call this function several times with
|
88 |
+
increasing input size in a streaming scenario, so the dropout will
|
89 |
+
be applied several times.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
offset (int or torch.tensor): start offset
|
93 |
+
size (int): required size of position encoding
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
torch.Tensor: Corresponding encoding
|
97 |
+
"""
|
98 |
+
# How to subscript a Union type:
|
99 |
+
# https://github.com/pytorch/pytorch/issues/69434
|
100 |
+
if isinstance(offset, int):
|
101 |
+
assert offset + size <= self.max_len
|
102 |
+
pos_emb = self.pe[:, offset:offset + size]
|
103 |
+
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
|
104 |
+
assert offset + size <= self.max_len
|
105 |
+
pos_emb = self.pe[:, offset:offset + size]
|
106 |
+
else: # for batched streaming decoding on GPU
|
107 |
+
assert torch.max(offset) + size <= self.max_len
|
108 |
+
index = offset.unsqueeze(1) + \
|
109 |
+
torch.arange(0, size).to(offset.device) # B X T
|
110 |
+
flag = index > 0
|
111 |
+
# remove negative offset
|
112 |
+
index = index * flag
|
113 |
+
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
|
114 |
+
|
115 |
+
if apply_dropout:
|
116 |
+
pos_emb = self.dropout(pos_emb)
|
117 |
+
return pos_emb
|
118 |
+
|
119 |
+
|
120 |
+
class RelPositionalEncoding(PositionalEncoding):
|
121 |
+
"""Relative positional encoding module.
|
122 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
123 |
+
Args:
|
124 |
+
d_model (int): Embedding dimension.
|
125 |
+
dropout_rate (float): Dropout rate.
|
126 |
+
max_len (int): Maximum input length.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
130 |
+
"""Initialize class."""
|
131 |
+
super().__init__(d_model, dropout_rate, max_len, reverse=True)
|
132 |
+
|
133 |
+
def forward(self,
|
134 |
+
x: torch.Tensor,
|
135 |
+
offset: Union[int, torch.Tensor] = 0) \
|
136 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
137 |
+
"""Compute positional encoding.
|
138 |
+
Args:
|
139 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
140 |
+
Returns:
|
141 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
142 |
+
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
143 |
+
"""
|
144 |
+
self.pe = self.pe.to(x.device)
|
145 |
+
x = x * self.xscale
|
146 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
147 |
+
return self.dropout(x), self.dropout(pos_emb)
|
148 |
+
|
149 |
+
|
150 |
+
class WhisperPositionalEncoding(PositionalEncoding):
|
151 |
+
""" Sinusoids position encoding used in openai-whisper.encoder
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
|
155 |
+
super().__init__(d_model, dropout_rate, max_len)
|
156 |
+
self.xscale = 1.0
|
157 |
+
log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
|
158 |
+
inv_timescales = torch.exp(-log_timescale_increment *
|
159 |
+
torch.arange(d_model // 2))
|
160 |
+
scaled_time = torch.arange(max_len)[:, np.newaxis] * \
|
161 |
+
inv_timescales[np.newaxis, :]
|
162 |
+
pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
163 |
+
delattr(self, "pe")
|
164 |
+
self.register_buffer("pe", pe.unsqueeze(0))
|
165 |
+
|
166 |
+
|
167 |
+
class LearnablePositionalEncoding(PositionalEncoding):
|
168 |
+
""" Learnable position encoding used in openai-whisper.decoder
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
|
172 |
+
super().__init__(d_model, dropout_rate, max_len)
|
173 |
+
# NOTE(xcsong): overwrite self.pe & self.xscale
|
174 |
+
self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
|
175 |
+
self.xscale = 1.0
|
176 |
+
|
177 |
+
|
178 |
+
class NoPositionalEncoding(torch.nn.Module):
|
179 |
+
""" No position encoding
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, d_model: int, dropout_rate: float):
|
183 |
+
super().__init__()
|
184 |
+
self.d_model = d_model
|
185 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
186 |
+
|
187 |
+
def forward(self,
|
188 |
+
x: torch.Tensor,
|
189 |
+
offset: Union[int, torch.Tensor] = 0) \
|
190 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
191 |
+
""" Just return zero vector for interface compatibility
|
192 |
+
"""
|
193 |
+
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
|
194 |
+
return self.dropout(x), pos_emb
|
195 |
+
|
196 |
+
def position_encoding(self, offset: Union[int, torch.Tensor],
|
197 |
+
size: int) -> torch.Tensor:
|
198 |
+
return torch.zeros(1, size, self.d_model)
|
199 |
+
|
200 |
+
|
201 |
+
class EspnetRelPositionalEncoding(torch.nn.Module):
|
202 |
+
"""Relative positional encoding module (new implementation).
|
203 |
+
|
204 |
+
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
205 |
+
|
206 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
207 |
+
|
208 |
+
Args:
|
209 |
+
d_model (int): Embedding dimension.
|
210 |
+
dropout_rate (float): Dropout rate.
|
211 |
+
max_len (int): Maximum input length.
|
212 |
+
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, d_model, dropout_rate, max_len=5000):
|
216 |
+
"""Construct an PositionalEncoding object."""
|
217 |
+
super(EspnetRelPositionalEncoding, self).__init__()
|
218 |
+
self.d_model = d_model
|
219 |
+
self.xscale = math.sqrt(self.d_model)
|
220 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
221 |
+
self.pe = None
|
222 |
+
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
223 |
+
|
224 |
+
def extend_pe(self, x):
|
225 |
+
"""Reset the positional encodings."""
|
226 |
+
if self.pe is not None:
|
227 |
+
# self.pe contains both positive and negative parts
|
228 |
+
# the length of self.pe is 2 * input_len - 1
|
229 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
230 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
231 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
232 |
+
return
|
233 |
+
# Suppose `i` means to the position of query vecotr and `j` means the
|
234 |
+
# position of key vector. We use position relative positions when keys
|
235 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
236 |
+
pe_positive = torch.zeros(x.size(1), self.d_model)
|
237 |
+
pe_negative = torch.zeros(x.size(1), self.d_model)
|
238 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
239 |
+
div_term = torch.exp(
|
240 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
241 |
+
* -(math.log(10000.0) / self.d_model)
|
242 |
+
)
|
243 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
244 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
245 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
246 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
247 |
+
|
248 |
+
# Reserve the order of positive indices and concat both positive and
|
249 |
+
# negative indices. This is used to support the shifting trick
|
250 |
+
# as in https://arxiv.org/abs/1901.02860
|
251 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
252 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
253 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
254 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
255 |
+
|
256 |
+
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0):
|
257 |
+
"""Add positional encoding.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
264 |
+
|
265 |
+
"""
|
266 |
+
self.extend_pe(x)
|
267 |
+
x = x * self.xscale
|
268 |
+
pos_emb = self.position_encoding(size=x.size(1), offset=offset)
|
269 |
+
return self.dropout(x), self.dropout(pos_emb)
|
270 |
+
|
271 |
+
def position_encoding(self,
|
272 |
+
offset: Union[int, torch.Tensor],
|
273 |
+
size: int) -> torch.Tensor:
|
274 |
+
""" For getting encoding in a streaming fashion
|
275 |
+
|
276 |
+
Attention!!!!!
|
277 |
+
we apply dropout only once at the whole utterance level in a none
|
278 |
+
streaming way, but will call this function several times with
|
279 |
+
increasing input size in a streaming scenario, so the dropout will
|
280 |
+
be applied several times.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
offset (int or torch.tensor): start offset
|
284 |
+
size (int): required size of position encoding
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
torch.Tensor: Corresponding encoding
|
288 |
+
"""
|
289 |
+
pos_emb = self.pe[
|
290 |
+
:,
|
291 |
+
self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size,
|
292 |
+
]
|
293 |
+
return pos_emb
|
cosyvoice/transformer/encoder.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song ([email protected])
|
3 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
"""Encoder definition."""
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint as ckpt
|
22 |
+
|
23 |
+
from cosyvoice.transformer.convolution import ConvolutionModule
|
24 |
+
from cosyvoice.transformer.encoder_layer import TransformerEncoderLayer
|
25 |
+
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
26 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
27 |
+
from cosyvoice.utils.class_utils import (
|
28 |
+
COSYVOICE_EMB_CLASSES,
|
29 |
+
COSYVOICE_SUBSAMPLE_CLASSES,
|
30 |
+
COSYVOICE_ATTENTION_CLASSES,
|
31 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
32 |
+
)
|
33 |
+
from cosyvoice.utils.mask import make_pad_mask
|
34 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
35 |
+
|
36 |
+
|
37 |
+
class BaseEncoder(torch.nn.Module):
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
input_size: int,
|
42 |
+
output_size: int = 256,
|
43 |
+
attention_heads: int = 4,
|
44 |
+
linear_units: int = 2048,
|
45 |
+
num_blocks: int = 6,
|
46 |
+
dropout_rate: float = 0.1,
|
47 |
+
positional_dropout_rate: float = 0.1,
|
48 |
+
attention_dropout_rate: float = 0.0,
|
49 |
+
input_layer: str = "conv2d",
|
50 |
+
pos_enc_layer_type: str = "abs_pos",
|
51 |
+
normalize_before: bool = True,
|
52 |
+
static_chunk_size: int = 0,
|
53 |
+
use_dynamic_chunk: bool = False,
|
54 |
+
global_cmvn: torch.nn.Module = None,
|
55 |
+
use_dynamic_left_chunk: bool = False,
|
56 |
+
gradient_checkpointing: bool = False,
|
57 |
+
):
|
58 |
+
"""
|
59 |
+
Args:
|
60 |
+
input_size (int): input dim
|
61 |
+
output_size (int): dimension of attention
|
62 |
+
attention_heads (int): the number of heads of multi head attention
|
63 |
+
linear_units (int): the hidden units number of position-wise feed
|
64 |
+
forward
|
65 |
+
num_blocks (int): the number of decoder blocks
|
66 |
+
dropout_rate (float): dropout rate
|
67 |
+
attention_dropout_rate (float): dropout rate in attention
|
68 |
+
positional_dropout_rate (float): dropout rate after adding
|
69 |
+
positional encoding
|
70 |
+
input_layer (str): input layer type.
|
71 |
+
optional [linear, conv2d, conv2d6, conv2d8]
|
72 |
+
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
73 |
+
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
74 |
+
normalize_before (bool):
|
75 |
+
True: use layer_norm before each sub-block of a layer.
|
76 |
+
False: use layer_norm after each sub-block of a layer.
|
77 |
+
static_chunk_size (int): chunk size for static chunk training and
|
78 |
+
decoding
|
79 |
+
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
80 |
+
training or not, You can only use fixed chunk(chunk_size > 0)
|
81 |
+
or dyanmic chunk size(use_dynamic_chunk = True)
|
82 |
+
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
83 |
+
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
84 |
+
dynamic chunk training
|
85 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
86 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
87 |
+
checkpointed segment during backward.
|
88 |
+
"""
|
89 |
+
super().__init__()
|
90 |
+
self._output_size = output_size
|
91 |
+
|
92 |
+
self.global_cmvn = global_cmvn
|
93 |
+
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
94 |
+
input_size,
|
95 |
+
output_size,
|
96 |
+
dropout_rate,
|
97 |
+
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
98 |
+
positional_dropout_rate),
|
99 |
+
)
|
100 |
+
|
101 |
+
self.normalize_before = normalize_before
|
102 |
+
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
103 |
+
self.static_chunk_size = static_chunk_size
|
104 |
+
self.use_dynamic_chunk = use_dynamic_chunk
|
105 |
+
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
106 |
+
self.gradient_checkpointing = gradient_checkpointing
|
107 |
+
|
108 |
+
def output_size(self) -> int:
|
109 |
+
return self._output_size
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
xs: torch.Tensor,
|
114 |
+
xs_lens: torch.Tensor,
|
115 |
+
decoding_chunk_size: int = 0,
|
116 |
+
num_decoding_left_chunks: int = -1,
|
117 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
118 |
+
"""Embed positions in tensor.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
xs: padded input tensor (B, T, D)
|
122 |
+
xs_lens: input length (B)
|
123 |
+
decoding_chunk_size: decoding chunk size for dynamic chunk
|
124 |
+
0: default for training, use random dynamic chunk.
|
125 |
+
<0: for decoding, use full chunk.
|
126 |
+
>0: for decoding, use fixed chunk size as set.
|
127 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
128 |
+
the chunk size is decoding_chunk_size.
|
129 |
+
>=0: use num_decoding_left_chunks
|
130 |
+
<0: use all left chunks
|
131 |
+
Returns:
|
132 |
+
encoder output tensor xs, and subsampled masks
|
133 |
+
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
134 |
+
masks: torch.Tensor batch padding mask after subsample
|
135 |
+
(B, 1, T' ~= T/subsample_rate)
|
136 |
+
NOTE(xcsong):
|
137 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
138 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
139 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
140 |
+
"""
|
141 |
+
T = xs.size(1)
|
142 |
+
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
143 |
+
if self.global_cmvn is not None:
|
144 |
+
xs = self.global_cmvn(xs)
|
145 |
+
xs, pos_emb, masks = self.embed(xs, masks)
|
146 |
+
mask_pad = masks # (B, 1, T/subsample_rate)
|
147 |
+
chunk_masks = add_optional_chunk_mask(xs, masks,
|
148 |
+
self.use_dynamic_chunk,
|
149 |
+
self.use_dynamic_left_chunk,
|
150 |
+
decoding_chunk_size,
|
151 |
+
self.static_chunk_size,
|
152 |
+
num_decoding_left_chunks)
|
153 |
+
if self.gradient_checkpointing and self.training:
|
154 |
+
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
|
155 |
+
mask_pad)
|
156 |
+
else:
|
157 |
+
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
158 |
+
if self.normalize_before:
|
159 |
+
xs = self.after_norm(xs)
|
160 |
+
# Here we assume the mask is not changed in encoder layers, so just
|
161 |
+
# return the masks before encoder layers, and the masks will be used
|
162 |
+
# for cross attention with decoder later
|
163 |
+
return xs, masks
|
164 |
+
|
165 |
+
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
166 |
+
pos_emb: torch.Tensor,
|
167 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
168 |
+
for layer in self.encoders:
|
169 |
+
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
170 |
+
return xs
|
171 |
+
|
172 |
+
@torch.jit.ignore(drop=True)
|
173 |
+
def forward_layers_checkpointed(self, xs: torch.Tensor,
|
174 |
+
chunk_masks: torch.Tensor,
|
175 |
+
pos_emb: torch.Tensor,
|
176 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
177 |
+
for layer in self.encoders:
|
178 |
+
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
|
179 |
+
chunk_masks, pos_emb,
|
180 |
+
mask_pad)
|
181 |
+
return xs
|
182 |
+
|
183 |
+
def forward_chunk(
|
184 |
+
self,
|
185 |
+
xs: torch.Tensor,
|
186 |
+
offset: int,
|
187 |
+
required_cache_size: int,
|
188 |
+
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
189 |
+
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
190 |
+
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
191 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
192 |
+
""" Forward just one chunk
|
193 |
+
|
194 |
+
Args:
|
195 |
+
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
|
196 |
+
where `time == (chunk_size - 1) * subsample_rate + \
|
197 |
+
subsample.right_context + 1`
|
198 |
+
offset (int): current offset in encoder output time stamp
|
199 |
+
required_cache_size (int): cache size required for next chunk
|
200 |
+
compuation
|
201 |
+
>=0: actual cache size
|
202 |
+
<0: means all history cache is required
|
203 |
+
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
|
204 |
+
transformer/conformer attention, with shape
|
205 |
+
(elayers, head, cache_t1, d_k * 2), where
|
206 |
+
`head * d_k == hidden-dim` and
|
207 |
+
`cache_t1 == chunk_size * num_decoding_left_chunks`.
|
208 |
+
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
|
209 |
+
(elayers, b=1, hidden-dim, cache_t2), where
|
210 |
+
`cache_t2 == cnn.lorder - 1`
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
torch.Tensor: output of current input xs,
|
214 |
+
with shape (b=1, chunk_size, hidden-dim).
|
215 |
+
torch.Tensor: new attention cache required for next chunk, with
|
216 |
+
dynamic shape (elayers, head, ?, d_k * 2)
|
217 |
+
depending on required_cache_size.
|
218 |
+
torch.Tensor: new conformer cnn cache required for next chunk, with
|
219 |
+
same shape as the original cnn_cache.
|
220 |
+
|
221 |
+
"""
|
222 |
+
assert xs.size(0) == 1
|
223 |
+
# tmp_masks is just for interface compatibility
|
224 |
+
tmp_masks = torch.ones(1,
|
225 |
+
xs.size(1),
|
226 |
+
device=xs.device,
|
227 |
+
dtype=torch.bool)
|
228 |
+
tmp_masks = tmp_masks.unsqueeze(1)
|
229 |
+
if self.global_cmvn is not None:
|
230 |
+
xs = self.global_cmvn(xs)
|
231 |
+
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
232 |
+
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
233 |
+
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
|
234 |
+
elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
|
235 |
+
chunk_size = xs.size(1)
|
236 |
+
attention_key_size = cache_t1 + chunk_size
|
237 |
+
pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
|
238 |
+
size=attention_key_size)
|
239 |
+
if required_cache_size < 0:
|
240 |
+
next_cache_start = 0
|
241 |
+
elif required_cache_size == 0:
|
242 |
+
next_cache_start = attention_key_size
|
243 |
+
else:
|
244 |
+
next_cache_start = max(attention_key_size - required_cache_size, 0)
|
245 |
+
r_att_cache = []
|
246 |
+
r_cnn_cache = []
|
247 |
+
for i, layer in enumerate(self.encoders):
|
248 |
+
# NOTE(xcsong): Before layer.forward
|
249 |
+
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
|
250 |
+
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
|
251 |
+
xs, _, new_att_cache, new_cnn_cache = layer(
|
252 |
+
xs,
|
253 |
+
att_mask,
|
254 |
+
pos_emb,
|
255 |
+
att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
|
256 |
+
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
|
257 |
+
# NOTE(xcsong): After layer.forward
|
258 |
+
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
|
259 |
+
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
|
260 |
+
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
|
261 |
+
r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
|
262 |
+
if self.normalize_before:
|
263 |
+
xs = self.after_norm(xs)
|
264 |
+
|
265 |
+
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
|
266 |
+
# ? may be larger than cache_t1, it depends on required_cache_size
|
267 |
+
r_att_cache = torch.cat(r_att_cache, dim=0)
|
268 |
+
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
|
269 |
+
r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
|
270 |
+
|
271 |
+
return (xs, r_att_cache, r_cnn_cache)
|
272 |
+
|
273 |
+
def forward_chunk_by_chunk(
|
274 |
+
self,
|
275 |
+
xs: torch.Tensor,
|
276 |
+
decoding_chunk_size: int,
|
277 |
+
num_decoding_left_chunks: int = -1,
|
278 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
279 |
+
""" Forward input chunk by chunk with chunk_size like a streaming
|
280 |
+
fashion
|
281 |
+
|
282 |
+
Here we should pay special attention to computation cache in the
|
283 |
+
streaming style forward chunk by chunk. Three things should be taken
|
284 |
+
into account for computation in the current network:
|
285 |
+
1. transformer/conformer encoder layers output cache
|
286 |
+
2. convolution in conformer
|
287 |
+
3. convolution in subsampling
|
288 |
+
|
289 |
+
However, we don't implement subsampling cache for:
|
290 |
+
1. We can control subsampling module to output the right result by
|
291 |
+
overlapping input instead of cache left context, even though it
|
292 |
+
wastes some computation, but subsampling only takes a very
|
293 |
+
small fraction of computation in the whole model.
|
294 |
+
2. Typically, there are several covolution layers with subsampling
|
295 |
+
in subsampling module, it is tricky and complicated to do cache
|
296 |
+
with different convolution layers with different subsampling
|
297 |
+
rate.
|
298 |
+
3. Currently, nn.Sequential is used to stack all the convolution
|
299 |
+
layers in subsampling, we need to rewrite it to make it work
|
300 |
+
with cache, which is not prefered.
|
301 |
+
Args:
|
302 |
+
xs (torch.Tensor): (1, max_len, dim)
|
303 |
+
chunk_size (int): decoding chunk size
|
304 |
+
"""
|
305 |
+
assert decoding_chunk_size > 0
|
306 |
+
# The model is trained by static or dynamic chunk
|
307 |
+
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
308 |
+
subsampling = self.embed.subsampling_rate
|
309 |
+
context = self.embed.right_context + 1 # Add current frame
|
310 |
+
stride = subsampling * decoding_chunk_size
|
311 |
+
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
312 |
+
num_frames = xs.size(1)
|
313 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
314 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
315 |
+
outputs = []
|
316 |
+
offset = 0
|
317 |
+
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
318 |
+
|
319 |
+
# Feed forward overlap input step by step
|
320 |
+
for cur in range(0, num_frames - context + 1, stride):
|
321 |
+
end = min(cur + decoding_window, num_frames)
|
322 |
+
chunk_xs = xs[:, cur:end, :]
|
323 |
+
(y, att_cache,
|
324 |
+
cnn_cache) = self.forward_chunk(chunk_xs, offset,
|
325 |
+
required_cache_size, att_cache,
|
326 |
+
cnn_cache)
|
327 |
+
outputs.append(y)
|
328 |
+
offset += y.size(1)
|
329 |
+
ys = torch.cat(outputs, 1)
|
330 |
+
masks = torch.ones((1, 1, ys.size(1)),
|
331 |
+
device=ys.device,
|
332 |
+
dtype=torch.bool)
|
333 |
+
return ys, masks
|
334 |
+
|
335 |
+
|
336 |
+
class TransformerEncoder(BaseEncoder):
|
337 |
+
"""Transformer encoder module."""
|
338 |
+
|
339 |
+
def __init__(
|
340 |
+
self,
|
341 |
+
input_size: int,
|
342 |
+
output_size: int = 256,
|
343 |
+
attention_heads: int = 4,
|
344 |
+
linear_units: int = 2048,
|
345 |
+
num_blocks: int = 6,
|
346 |
+
dropout_rate: float = 0.1,
|
347 |
+
positional_dropout_rate: float = 0.1,
|
348 |
+
attention_dropout_rate: float = 0.0,
|
349 |
+
input_layer: str = "conv2d",
|
350 |
+
pos_enc_layer_type: str = "abs_pos",
|
351 |
+
normalize_before: bool = True,
|
352 |
+
static_chunk_size: int = 0,
|
353 |
+
use_dynamic_chunk: bool = False,
|
354 |
+
global_cmvn: torch.nn.Module = None,
|
355 |
+
use_dynamic_left_chunk: bool = False,
|
356 |
+
key_bias: bool = True,
|
357 |
+
selfattention_layer_type: str = "selfattn",
|
358 |
+
activation_type: str = "relu",
|
359 |
+
gradient_checkpointing: bool = False,
|
360 |
+
):
|
361 |
+
""" Construct TransformerEncoder
|
362 |
+
|
363 |
+
See Encoder for the meaning of each parameter.
|
364 |
+
"""
|
365 |
+
super().__init__(input_size, output_size, attention_heads,
|
366 |
+
linear_units, num_blocks, dropout_rate,
|
367 |
+
positional_dropout_rate, attention_dropout_rate,
|
368 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
369 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
370 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
371 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
372 |
+
self.encoders = torch.nn.ModuleList([
|
373 |
+
TransformerEncoderLayer(
|
374 |
+
output_size,
|
375 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
|
376 |
+
output_size,
|
377 |
+
attention_dropout_rate,
|
378 |
+
key_bias),
|
379 |
+
PositionwiseFeedForward(output_size, linear_units,
|
380 |
+
dropout_rate, activation),
|
381 |
+
dropout_rate, normalize_before) for _ in range(num_blocks)
|
382 |
+
])
|
383 |
+
|
384 |
+
|
385 |
+
class ConformerEncoder(BaseEncoder):
|
386 |
+
"""Conformer encoder module."""
|
387 |
+
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
input_size: int,
|
391 |
+
output_size: int = 256,
|
392 |
+
attention_heads: int = 4,
|
393 |
+
linear_units: int = 2048,
|
394 |
+
num_blocks: int = 6,
|
395 |
+
dropout_rate: float = 0.1,
|
396 |
+
positional_dropout_rate: float = 0.1,
|
397 |
+
attention_dropout_rate: float = 0.0,
|
398 |
+
input_layer: str = "conv2d",
|
399 |
+
pos_enc_layer_type: str = "rel_pos",
|
400 |
+
normalize_before: bool = True,
|
401 |
+
static_chunk_size: int = 0,
|
402 |
+
use_dynamic_chunk: bool = False,
|
403 |
+
global_cmvn: torch.nn.Module = None,
|
404 |
+
use_dynamic_left_chunk: bool = False,
|
405 |
+
positionwise_conv_kernel_size: int = 1,
|
406 |
+
macaron_style: bool = True,
|
407 |
+
selfattention_layer_type: str = "rel_selfattn",
|
408 |
+
activation_type: str = "swish",
|
409 |
+
use_cnn_module: bool = True,
|
410 |
+
cnn_module_kernel: int = 15,
|
411 |
+
causal: bool = False,
|
412 |
+
cnn_module_norm: str = "batch_norm",
|
413 |
+
key_bias: bool = True,
|
414 |
+
gradient_checkpointing: bool = False,
|
415 |
+
):
|
416 |
+
"""Construct ConformerEncoder
|
417 |
+
|
418 |
+
Args:
|
419 |
+
input_size to use_dynamic_chunk, see in BaseEncoder
|
420 |
+
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
421 |
+
conv1d layer.
|
422 |
+
macaron_style (bool): Whether to use macaron style for
|
423 |
+
positionwise layer.
|
424 |
+
selfattention_layer_type (str): Encoder attention layer type,
|
425 |
+
the parameter has no effect now, it's just for configure
|
426 |
+
compatibility.
|
427 |
+
activation_type (str): Encoder activation function type.
|
428 |
+
use_cnn_module (bool): Whether to use convolution module.
|
429 |
+
cnn_module_kernel (int): Kernel size of convolution module.
|
430 |
+
causal (bool): whether to use causal convolution or not.
|
431 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
432 |
+
"""
|
433 |
+
super().__init__(input_size, output_size, attention_heads,
|
434 |
+
linear_units, num_blocks, dropout_rate,
|
435 |
+
positional_dropout_rate, attention_dropout_rate,
|
436 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
437 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
438 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
439 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
440 |
+
|
441 |
+
# self-attention module definition
|
442 |
+
encoder_selfattn_layer_args = (
|
443 |
+
attention_heads,
|
444 |
+
output_size,
|
445 |
+
attention_dropout_rate,
|
446 |
+
key_bias,
|
447 |
+
)
|
448 |
+
# feed-forward module definition
|
449 |
+
positionwise_layer_args = (
|
450 |
+
output_size,
|
451 |
+
linear_units,
|
452 |
+
dropout_rate,
|
453 |
+
activation,
|
454 |
+
)
|
455 |
+
# convolution module definition
|
456 |
+
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
457 |
+
cnn_module_norm, causal)
|
458 |
+
|
459 |
+
self.encoders = torch.nn.ModuleList([
|
460 |
+
ConformerEncoderLayer(
|
461 |
+
output_size,
|
462 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
463 |
+
*encoder_selfattn_layer_args),
|
464 |
+
PositionwiseFeedForward(*positionwise_layer_args),
|
465 |
+
PositionwiseFeedForward(
|
466 |
+
*positionwise_layer_args) if macaron_style else None,
|
467 |
+
ConvolutionModule(
|
468 |
+
*convolution_layer_args) if use_cnn_module else None,
|
469 |
+
dropout_rate,
|
470 |
+
normalize_before,
|
471 |
+
) for _ in range(num_blocks)
|
472 |
+
])
|
cosyvoice/transformer/encoder_layer.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song ([email protected])
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Encoder self-attention layer definition."""
|
17 |
+
|
18 |
+
from typing import Optional, Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
|
24 |
+
class TransformerEncoderLayer(nn.Module):
|
25 |
+
"""Encoder layer module.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
size (int): Input dimension.
|
29 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
30 |
+
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
31 |
+
instance can be used as the argument.
|
32 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
33 |
+
`PositionwiseFeedForward`, instance can be used as the argument.
|
34 |
+
dropout_rate (float): Dropout rate.
|
35 |
+
normalize_before (bool):
|
36 |
+
True: use layer_norm before each sub-block.
|
37 |
+
False: to use layer_norm after each sub-block.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
size: int,
|
43 |
+
self_attn: torch.nn.Module,
|
44 |
+
feed_forward: torch.nn.Module,
|
45 |
+
dropout_rate: float,
|
46 |
+
normalize_before: bool = True,
|
47 |
+
):
|
48 |
+
"""Construct an EncoderLayer object."""
|
49 |
+
super().__init__()
|
50 |
+
self.self_attn = self_attn
|
51 |
+
self.feed_forward = feed_forward
|
52 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
53 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
54 |
+
self.dropout = nn.Dropout(dropout_rate)
|
55 |
+
self.size = size
|
56 |
+
self.normalize_before = normalize_before
|
57 |
+
|
58 |
+
def forward(
|
59 |
+
self,
|
60 |
+
x: torch.Tensor,
|
61 |
+
mask: torch.Tensor,
|
62 |
+
pos_emb: torch.Tensor,
|
63 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
64 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
65 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
66 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
67 |
+
"""Compute encoded features.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
x (torch.Tensor): (#batch, time, size)
|
71 |
+
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
72 |
+
(0, 0, 0) means fake mask.
|
73 |
+
pos_emb (torch.Tensor): just for interface compatibility
|
74 |
+
to ConformerEncoderLayer
|
75 |
+
mask_pad (torch.Tensor): does not used in transformer layer,
|
76 |
+
just for unified api with conformer.
|
77 |
+
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
78 |
+
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
79 |
+
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
80 |
+
(#batch=1, size, cache_t2), not used here, it's for interface
|
81 |
+
compatibility to ConformerEncoderLayer.
|
82 |
+
Returns:
|
83 |
+
torch.Tensor: Output tensor (#batch, time, size).
|
84 |
+
torch.Tensor: Mask tensor (#batch, time, time).
|
85 |
+
torch.Tensor: att_cache tensor,
|
86 |
+
(#batch=1, head, cache_t1 + time, d_k * 2).
|
87 |
+
torch.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = x
|
91 |
+
if self.normalize_before:
|
92 |
+
x = self.norm1(x)
|
93 |
+
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb=pos_emb, cache=att_cache)
|
94 |
+
x = residual + self.dropout(x_att)
|
95 |
+
if not self.normalize_before:
|
96 |
+
x = self.norm1(x)
|
97 |
+
|
98 |
+
residual = x
|
99 |
+
if self.normalize_before:
|
100 |
+
x = self.norm2(x)
|
101 |
+
x = residual + self.dropout(self.feed_forward(x))
|
102 |
+
if not self.normalize_before:
|
103 |
+
x = self.norm2(x)
|
104 |
+
|
105 |
+
fake_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
106 |
+
return x, mask, new_att_cache, fake_cnn_cache
|
107 |
+
|
108 |
+
|
109 |
+
class ConformerEncoderLayer(nn.Module):
|
110 |
+
"""Encoder layer module.
|
111 |
+
Args:
|
112 |
+
size (int): Input dimension.
|
113 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
114 |
+
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
115 |
+
instance can be used as the argument.
|
116 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
117 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
118 |
+
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
|
119 |
+
instance.
|
120 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
121 |
+
conv_module (torch.nn.Module): Convolution module instance.
|
122 |
+
`ConvlutionModule` instance can be used as the argument.
|
123 |
+
dropout_rate (float): Dropout rate.
|
124 |
+
normalize_before (bool):
|
125 |
+
True: use layer_norm before each sub-block.
|
126 |
+
False: use layer_norm after each sub-block.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
size: int,
|
132 |
+
self_attn: torch.nn.Module,
|
133 |
+
feed_forward: Optional[nn.Module] = None,
|
134 |
+
feed_forward_macaron: Optional[nn.Module] = None,
|
135 |
+
conv_module: Optional[nn.Module] = None,
|
136 |
+
dropout_rate: float = 0.1,
|
137 |
+
normalize_before: bool = True,
|
138 |
+
):
|
139 |
+
"""Construct an EncoderLayer object."""
|
140 |
+
super().__init__()
|
141 |
+
self.self_attn = self_attn
|
142 |
+
self.feed_forward = feed_forward
|
143 |
+
self.feed_forward_macaron = feed_forward_macaron
|
144 |
+
self.conv_module = conv_module
|
145 |
+
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
|
146 |
+
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
|
147 |
+
if feed_forward_macaron is not None:
|
148 |
+
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
|
149 |
+
self.ff_scale = 0.5
|
150 |
+
else:
|
151 |
+
self.ff_scale = 1.0
|
152 |
+
if self.conv_module is not None:
|
153 |
+
self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module
|
154 |
+
self.norm_final = nn.LayerNorm(
|
155 |
+
size, eps=1e-5) # for the final output of the block
|
156 |
+
self.dropout = nn.Dropout(dropout_rate)
|
157 |
+
self.size = size
|
158 |
+
self.normalize_before = normalize_before
|
159 |
+
|
160 |
+
def forward(
|
161 |
+
self,
|
162 |
+
x: torch.Tensor,
|
163 |
+
mask: torch.Tensor,
|
164 |
+
pos_emb: torch.Tensor,
|
165 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
166 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
167 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
168 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
169 |
+
"""Compute encoded features.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
x (torch.Tensor): (#batch, time, size)
|
173 |
+
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
174 |
+
(0, 0, 0) means fake mask.
|
175 |
+
pos_emb (torch.Tensor): positional encoding, must not be None
|
176 |
+
for ConformerEncoderLayer.
|
177 |
+
mask_pad (torch.Tensor): batch padding mask used for conv module.
|
178 |
+
(#batch, 1,time), (0, 0, 0) means fake mask.
|
179 |
+
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
180 |
+
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
181 |
+
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
182 |
+
(#batch=1, size, cache_t2)
|
183 |
+
Returns:
|
184 |
+
torch.Tensor: Output tensor (#batch, time, size).
|
185 |
+
torch.Tensor: Mask tensor (#batch, time, time).
|
186 |
+
torch.Tensor: att_cache tensor,
|
187 |
+
(#batch=1, head, cache_t1 + time, d_k * 2).
|
188 |
+
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
|
189 |
+
"""
|
190 |
+
|
191 |
+
# whether to use macaron style
|
192 |
+
if self.feed_forward_macaron is not None:
|
193 |
+
residual = x
|
194 |
+
if self.normalize_before:
|
195 |
+
x = self.norm_ff_macaron(x)
|
196 |
+
x = residual + self.ff_scale * self.dropout(
|
197 |
+
self.feed_forward_macaron(x))
|
198 |
+
if not self.normalize_before:
|
199 |
+
x = self.norm_ff_macaron(x)
|
200 |
+
|
201 |
+
# multi-headed self-attention module
|
202 |
+
residual = x
|
203 |
+
if self.normalize_before:
|
204 |
+
x = self.norm_mha(x)
|
205 |
+
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
|
206 |
+
att_cache)
|
207 |
+
x = residual + self.dropout(x_att)
|
208 |
+
if not self.normalize_before:
|
209 |
+
x = self.norm_mha(x)
|
210 |
+
|
211 |
+
# convolution module
|
212 |
+
# Fake new cnn cache here, and then change it in conv_module
|
213 |
+
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
214 |
+
if self.conv_module is not None:
|
215 |
+
residual = x
|
216 |
+
if self.normalize_before:
|
217 |
+
x = self.norm_conv(x)
|
218 |
+
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
|
219 |
+
x = residual + self.dropout(x)
|
220 |
+
|
221 |
+
if not self.normalize_before:
|
222 |
+
x = self.norm_conv(x)
|
223 |
+
|
224 |
+
# feed forward module
|
225 |
+
residual = x
|
226 |
+
if self.normalize_before:
|
227 |
+
x = self.norm_ff(x)
|
228 |
+
|
229 |
+
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
230 |
+
if not self.normalize_before:
|
231 |
+
x = self.norm_ff(x)
|
232 |
+
|
233 |
+
if self.conv_module is not None:
|
234 |
+
x = self.norm_final(x)
|
235 |
+
|
236 |
+
return x, mask, new_att_cache, new_cnn_cache
|
cosyvoice/transformer/label_smoothing_loss.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Label smoothing module."""
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
|
21 |
+
class LabelSmoothingLoss(nn.Module):
|
22 |
+
"""Label-smoothing loss.
|
23 |
+
|
24 |
+
In a standard CE loss, the label's data distribution is:
|
25 |
+
[0,1,2] ->
|
26 |
+
[
|
27 |
+
[1.0, 0.0, 0.0],
|
28 |
+
[0.0, 1.0, 0.0],
|
29 |
+
[0.0, 0.0, 1.0],
|
30 |
+
]
|
31 |
+
|
32 |
+
In the smoothing version CE Loss,some probabilities
|
33 |
+
are taken from the true label prob (1.0) and are divided
|
34 |
+
among other labels.
|
35 |
+
|
36 |
+
e.g.
|
37 |
+
smoothing=0.1
|
38 |
+
[0,1,2] ->
|
39 |
+
[
|
40 |
+
[0.9, 0.05, 0.05],
|
41 |
+
[0.05, 0.9, 0.05],
|
42 |
+
[0.05, 0.05, 0.9],
|
43 |
+
]
|
44 |
+
|
45 |
+
Args:
|
46 |
+
size (int): the number of class
|
47 |
+
padding_idx (int): padding class id which will be ignored for loss
|
48 |
+
smoothing (float): smoothing rate (0.0 means the conventional CE)
|
49 |
+
normalize_length (bool):
|
50 |
+
normalize loss by sequence length if True
|
51 |
+
normalize loss by batch size if False
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self,
|
55 |
+
size: int,
|
56 |
+
padding_idx: int,
|
57 |
+
smoothing: float,
|
58 |
+
normalize_length: bool = False):
|
59 |
+
"""Construct an LabelSmoothingLoss object."""
|
60 |
+
super(LabelSmoothingLoss, self).__init__()
|
61 |
+
self.criterion = nn.KLDivLoss(reduction="none")
|
62 |
+
self.padding_idx = padding_idx
|
63 |
+
self.confidence = 1.0 - smoothing
|
64 |
+
self.smoothing = smoothing
|
65 |
+
self.size = size
|
66 |
+
self.normalize_length = normalize_length
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
69 |
+
"""Compute loss between x and target.
|
70 |
+
|
71 |
+
The model outputs and data labels tensors are flatten to
|
72 |
+
(batch*seqlen, class) shape and a mask is applied to the
|
73 |
+
padding part which should not be calculated for loss.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
x (torch.Tensor): prediction (batch, seqlen, class)
|
77 |
+
target (torch.Tensor):
|
78 |
+
target signal masked with self.padding_id (batch, seqlen)
|
79 |
+
Returns:
|
80 |
+
loss (torch.Tensor) : The KL loss, scalar float value
|
81 |
+
"""
|
82 |
+
assert x.size(2) == self.size
|
83 |
+
batch_size = x.size(0)
|
84 |
+
x = x.view(-1, self.size)
|
85 |
+
target = target.view(-1)
|
86 |
+
# use zeros_like instead of torch.no_grad() for true_dist,
|
87 |
+
# since no_grad() can not be exported by JIT
|
88 |
+
true_dist = torch.zeros_like(x)
|
89 |
+
true_dist.fill_(self.smoothing / (self.size - 1))
|
90 |
+
ignore = target == self.padding_idx # (B,)
|
91 |
+
total = len(target) - ignore.sum().item()
|
92 |
+
target = target.masked_fill(ignore, 0) # avoid -1 index
|
93 |
+
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
94 |
+
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
95 |
+
denom = total if self.normalize_length else batch_size
|
96 |
+
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
cosyvoice/transformer/positionwise_feed_forward.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Positionwise feed forward layer definition."""
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
|
20 |
+
class PositionwiseFeedForward(torch.nn.Module):
|
21 |
+
"""Positionwise feed forward layer.
|
22 |
+
|
23 |
+
FeedForward are appied on each position of the sequence.
|
24 |
+
The output dim is same with the input dim.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
idim (int): Input dimenstion.
|
28 |
+
hidden_units (int): The number of hidden units.
|
29 |
+
dropout_rate (float): Dropout rate.
|
30 |
+
activation (torch.nn.Module): Activation function
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
idim: int,
|
36 |
+
hidden_units: int,
|
37 |
+
dropout_rate: float,
|
38 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
39 |
+
):
|
40 |
+
"""Construct a PositionwiseFeedForward object."""
|
41 |
+
super(PositionwiseFeedForward, self).__init__()
|
42 |
+
self.w_1 = torch.nn.Linear(idim, hidden_units)
|
43 |
+
self.activation = activation
|
44 |
+
self.dropout = torch.nn.Dropout(dropout_rate)
|
45 |
+
self.w_2 = torch.nn.Linear(hidden_units, idim)
|
46 |
+
|
47 |
+
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
48 |
+
"""Forward function.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
xs: input tensor (B, L, D)
|
52 |
+
Returns:
|
53 |
+
output tensor, (B, L, D)
|
54 |
+
"""
|
55 |
+
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
|
56 |
+
|
57 |
+
|
58 |
+
class MoEFFNLayer(torch.nn.Module):
|
59 |
+
"""
|
60 |
+
Mixture of expert with Positionwise feed forward layer
|
61 |
+
See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
|
62 |
+
The output dim is same with the input dim.
|
63 |
+
|
64 |
+
Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
|
65 |
+
https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
|
66 |
+
Args:
|
67 |
+
n_expert: number of expert.
|
68 |
+
n_expert_per_token: The actual number of experts used for each frame
|
69 |
+
idim (int): Input dimenstion.
|
70 |
+
hidden_units (int): The number of hidden units.
|
71 |
+
dropout_rate (float): Dropout rate.
|
72 |
+
activation (torch.nn.Module): Activation function
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
n_expert: int,
|
78 |
+
n_expert_per_token: int,
|
79 |
+
idim: int,
|
80 |
+
hidden_units: int,
|
81 |
+
dropout_rate: float,
|
82 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
83 |
+
):
|
84 |
+
super(MoEFFNLayer, self).__init__()
|
85 |
+
self.gate = torch.nn.Linear(idim, n_expert, bias=False)
|
86 |
+
self.experts = torch.nn.ModuleList(
|
87 |
+
PositionwiseFeedForward(idim, hidden_units, dropout_rate,
|
88 |
+
activation) for _ in range(n_expert))
|
89 |
+
self.n_expert_per_token = n_expert_per_token
|
90 |
+
|
91 |
+
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
92 |
+
"""Foward function.
|
93 |
+
Args:
|
94 |
+
xs: input tensor (B, L, D)
|
95 |
+
Returns:
|
96 |
+
output tensor, (B, L, D)
|
97 |
+
|
98 |
+
"""
|
99 |
+
B, L, D = xs.size(
|
100 |
+
) # batch size, sequence length, embedding dimension (idim)
|
101 |
+
xs = xs.view(-1, D) # (B*L, D)
|
102 |
+
router = self.gate(xs) # (B*L, n_expert)
|
103 |
+
logits, indices = torch.topk(
|
104 |
+
router, self.n_expert_per_token
|
105 |
+
) # probs:(B*L, n_expert), indices: (B*L, n_expert)
|
106 |
+
weights = torch.nn.functional.softmax(
|
107 |
+
logits, dim=1,
|
108 |
+
dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
|
109 |
+
output = torch.zeros_like(xs) # (B*L, D)
|
110 |
+
for i, expert in enumerate(self.experts):
|
111 |
+
mask = indices == i
|
112 |
+
batch_idx, ith_expert = torch.where(mask)
|
113 |
+
output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
|
114 |
+
xs[batch_idx])
|
115 |
+
return output.view(B, L, D)
|
cosyvoice/transformer/subsampling.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Subsampling layer definition."""
|
17 |
+
|
18 |
+
from typing import Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
|
23 |
+
class BaseSubsampling(torch.nn.Module):
|
24 |
+
|
25 |
+
def __init__(self):
|
26 |
+
super().__init__()
|
27 |
+
self.right_context = 0
|
28 |
+
self.subsampling_rate = 1
|
29 |
+
|
30 |
+
def position_encoding(self, offset: Union[int, torch.Tensor],
|
31 |
+
size: int) -> torch.Tensor:
|
32 |
+
return self.pos_enc.position_encoding(offset, size)
|
33 |
+
|
34 |
+
|
35 |
+
class EmbedinigNoSubsampling(BaseSubsampling):
|
36 |
+
"""Embedding input without subsampling
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
40 |
+
pos_enc_class: torch.nn.Module):
|
41 |
+
super().__init__()
|
42 |
+
self.embed = torch.nn.Embedding(idim, odim)
|
43 |
+
self.pos_enc = pos_enc_class
|
44 |
+
|
45 |
+
def forward(
|
46 |
+
self,
|
47 |
+
x: torch.Tensor,
|
48 |
+
x_mask: torch.Tensor,
|
49 |
+
offset: Union[int, torch.Tensor] = 0
|
50 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
51 |
+
"""Input x.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
55 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
59 |
+
where time' = time .
|
60 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
61 |
+
where time' = time .
|
62 |
+
|
63 |
+
"""
|
64 |
+
x = self.embed(x)
|
65 |
+
x, pos_emb = self.pos_enc(x, offset)
|
66 |
+
return x, pos_emb, x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class LinearNoSubsampling(BaseSubsampling):
|
70 |
+
"""Linear transform the input without subsampling
|
71 |
+
|
72 |
+
Args:
|
73 |
+
idim (int): Input dimension.
|
74 |
+
odim (int): Output dimension.
|
75 |
+
dropout_rate (float): Dropout rate.
|
76 |
+
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
80 |
+
pos_enc_class: torch.nn.Module):
|
81 |
+
"""Construct an linear object."""
|
82 |
+
super().__init__()
|
83 |
+
self.out = torch.nn.Sequential(
|
84 |
+
torch.nn.Linear(idim, odim),
|
85 |
+
torch.nn.LayerNorm(odim, eps=1e-5),
|
86 |
+
torch.nn.Dropout(dropout_rate),
|
87 |
+
)
|
88 |
+
self.pos_enc = pos_enc_class
|
89 |
+
self.right_context = 0
|
90 |
+
self.subsampling_rate = 1
|
91 |
+
|
92 |
+
def forward(
|
93 |
+
self,
|
94 |
+
x: torch.Tensor,
|
95 |
+
x_mask: torch.Tensor,
|
96 |
+
offset: Union[int, torch.Tensor] = 0
|
97 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
98 |
+
"""Input x.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
102 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
106 |
+
where time' = time .
|
107 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
108 |
+
where time' = time .
|
109 |
+
|
110 |
+
"""
|
111 |
+
x = self.out(x)
|
112 |
+
x, pos_emb = self.pos_enc(x, offset)
|
113 |
+
return x, pos_emb, x_mask
|
114 |
+
|
115 |
+
|
116 |
+
class Conv1dSubsampling2(BaseSubsampling):
|
117 |
+
"""Convolutional 1D subsampling (to 1/2 length).
|
118 |
+
It is designed for Whisper, ref:
|
119 |
+
https://github.com/openai/whisper/blob/main/whisper/model.py
|
120 |
+
|
121 |
+
Args:
|
122 |
+
idim (int): Input dimension.
|
123 |
+
odim (int): Output dimension.
|
124 |
+
dropout_rate (float): Dropout rate.
|
125 |
+
|
126 |
+
"""
|
127 |
+
|
128 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
129 |
+
pos_enc_class: torch.nn.Module):
|
130 |
+
"""Construct an Conv1dSubsampling2 object."""
|
131 |
+
super().__init__()
|
132 |
+
self.conv = torch.nn.Sequential(
|
133 |
+
torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1),
|
134 |
+
torch.nn.GELU(),
|
135 |
+
torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1),
|
136 |
+
torch.nn.GELU(),
|
137 |
+
)
|
138 |
+
self.pos_enc = pos_enc_class
|
139 |
+
# The right context for every conv layer is computed by:
|
140 |
+
# (kernel_size - 1) * frame_rate_of_this_layer
|
141 |
+
self.subsampling_rate = 2
|
142 |
+
# 4 = (3 - 1) * 1 + (3 - 1) * 1
|
143 |
+
self.right_context = 4
|
144 |
+
|
145 |
+
def forward(
|
146 |
+
self,
|
147 |
+
x: torch.Tensor,
|
148 |
+
x_mask: torch.Tensor,
|
149 |
+
offset: Union[int, torch.Tensor] = 0
|
150 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
151 |
+
"""Subsample x.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
155 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
159 |
+
where time' = time // 2.
|
160 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
161 |
+
where time' = time // 2.
|
162 |
+
torch.Tensor: positional encoding
|
163 |
+
|
164 |
+
"""
|
165 |
+
time = x.size(1)
|
166 |
+
x = x.transpose(1, 2) # (b, f, t)
|
167 |
+
x = self.conv(x)
|
168 |
+
x = x.transpose(1, 2) # (b, t, f)
|
169 |
+
x, pos_emb = self.pos_enc(x, offset)
|
170 |
+
return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
|
171 |
+
|
172 |
+
|
173 |
+
class Conv2dSubsampling4(BaseSubsampling):
|
174 |
+
"""Convolutional 2D subsampling (to 1/4 length).
|
175 |
+
|
176 |
+
Args:
|
177 |
+
idim (int): Input dimension.
|
178 |
+
odim (int): Output dimension.
|
179 |
+
dropout_rate (float): Dropout rate.
|
180 |
+
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
184 |
+
pos_enc_class: torch.nn.Module):
|
185 |
+
"""Construct an Conv2dSubsampling4 object."""
|
186 |
+
super().__init__()
|
187 |
+
self.conv = torch.nn.Sequential(
|
188 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
189 |
+
torch.nn.ReLU(),
|
190 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
191 |
+
torch.nn.ReLU(),
|
192 |
+
)
|
193 |
+
self.out = torch.nn.Sequential(
|
194 |
+
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
|
195 |
+
self.pos_enc = pos_enc_class
|
196 |
+
# The right context for every conv layer is computed by:
|
197 |
+
# (kernel_size - 1) * frame_rate_of_this_layer
|
198 |
+
self.subsampling_rate = 4
|
199 |
+
# 6 = (3 - 1) * 1 + (3 - 1) * 2
|
200 |
+
self.right_context = 6
|
201 |
+
|
202 |
+
def forward(
|
203 |
+
self,
|
204 |
+
x: torch.Tensor,
|
205 |
+
x_mask: torch.Tensor,
|
206 |
+
offset: Union[int, torch.Tensor] = 0
|
207 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
208 |
+
"""Subsample x.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
212 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
216 |
+
where time' = time // 4.
|
217 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
218 |
+
where time' = time // 4.
|
219 |
+
torch.Tensor: positional encoding
|
220 |
+
|
221 |
+
"""
|
222 |
+
x = x.unsqueeze(1) # (b, c=1, t, f)
|
223 |
+
x = self.conv(x)
|
224 |
+
b, c, t, f = x.size()
|
225 |
+
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
226 |
+
x, pos_emb = self.pos_enc(x, offset)
|
227 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
|
228 |
+
|
229 |
+
|
230 |
+
class Conv2dSubsampling6(BaseSubsampling):
|
231 |
+
"""Convolutional 2D subsampling (to 1/6 length).
|
232 |
+
Args:
|
233 |
+
idim (int): Input dimension.
|
234 |
+
odim (int): Output dimension.
|
235 |
+
dropout_rate (float): Dropout rate.
|
236 |
+
pos_enc (torch.nn.Module): Custom position encoding layer.
|
237 |
+
"""
|
238 |
+
|
239 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
240 |
+
pos_enc_class: torch.nn.Module):
|
241 |
+
"""Construct an Conv2dSubsampling6 object."""
|
242 |
+
super().__init__()
|
243 |
+
self.conv = torch.nn.Sequential(
|
244 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
245 |
+
torch.nn.ReLU(),
|
246 |
+
torch.nn.Conv2d(odim, odim, 5, 3),
|
247 |
+
torch.nn.ReLU(),
|
248 |
+
)
|
249 |
+
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
|
250 |
+
odim)
|
251 |
+
self.pos_enc = pos_enc_class
|
252 |
+
# 10 = (3 - 1) * 1 + (5 - 1) * 2
|
253 |
+
self.subsampling_rate = 6
|
254 |
+
self.right_context = 10
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
x: torch.Tensor,
|
259 |
+
x_mask: torch.Tensor,
|
260 |
+
offset: Union[int, torch.Tensor] = 0
|
261 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
262 |
+
"""Subsample x.
|
263 |
+
Args:
|
264 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
265 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
269 |
+
where time' = time // 6.
|
270 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
271 |
+
where time' = time // 6.
|
272 |
+
torch.Tensor: positional encoding
|
273 |
+
"""
|
274 |
+
x = x.unsqueeze(1) # (b, c, t, f)
|
275 |
+
x = self.conv(x)
|
276 |
+
b, c, t, f = x.size()
|
277 |
+
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
278 |
+
x, pos_emb = self.pos_enc(x, offset)
|
279 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
|
280 |
+
|
281 |
+
|
282 |
+
class Conv2dSubsampling8(BaseSubsampling):
|
283 |
+
"""Convolutional 2D subsampling (to 1/8 length).
|
284 |
+
|
285 |
+
Args:
|
286 |
+
idim (int): Input dimension.
|
287 |
+
odim (int): Output dimension.
|
288 |
+
dropout_rate (float): Dropout rate.
|
289 |
+
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
293 |
+
pos_enc_class: torch.nn.Module):
|
294 |
+
"""Construct an Conv2dSubsampling8 object."""
|
295 |
+
super().__init__()
|
296 |
+
self.conv = torch.nn.Sequential(
|
297 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
298 |
+
torch.nn.ReLU(),
|
299 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
300 |
+
torch.nn.ReLU(),
|
301 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
302 |
+
torch.nn.ReLU(),
|
303 |
+
)
|
304 |
+
self.linear = torch.nn.Linear(
|
305 |
+
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
|
306 |
+
self.pos_enc = pos_enc_class
|
307 |
+
self.subsampling_rate = 8
|
308 |
+
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
|
309 |
+
self.right_context = 14
|
310 |
+
|
311 |
+
def forward(
|
312 |
+
self,
|
313 |
+
x: torch.Tensor,
|
314 |
+
x_mask: torch.Tensor,
|
315 |
+
offset: Union[int, torch.Tensor] = 0
|
316 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
317 |
+
"""Subsample x.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
321 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
325 |
+
where time' = time // 8.
|
326 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
327 |
+
where time' = time // 8.
|
328 |
+
torch.Tensor: positional encoding
|
329 |
+
"""
|
330 |
+
x = x.unsqueeze(1) # (b, c, t, f)
|
331 |
+
x = self.conv(x)
|
332 |
+
b, c, t, f = x.size()
|
333 |
+
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
334 |
+
x, pos_emb = self.pos_enc(x, offset)
|
335 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
|
336 |
+
|
337 |
+
|
338 |
+
class LegacyLinearNoSubsampling(BaseSubsampling):
|
339 |
+
"""Linear transform the input without subsampling
|
340 |
+
|
341 |
+
Args:
|
342 |
+
idim (int): Input dimension.
|
343 |
+
odim (int): Output dimension.
|
344 |
+
dropout_rate (float): Dropout rate.
|
345 |
+
|
346 |
+
"""
|
347 |
+
|
348 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
349 |
+
pos_enc_class: torch.nn.Module):
|
350 |
+
"""Construct an linear object."""
|
351 |
+
super().__init__()
|
352 |
+
self.out = torch.nn.Sequential(
|
353 |
+
torch.nn.Linear(idim, odim),
|
354 |
+
torch.nn.LayerNorm(odim, eps=1e-5),
|
355 |
+
torch.nn.Dropout(dropout_rate),
|
356 |
+
torch.nn.ReLU(),
|
357 |
+
)
|
358 |
+
self.pos_enc = pos_enc_class
|
359 |
+
self.right_context = 0
|
360 |
+
self.subsampling_rate = 1
|
361 |
+
|
362 |
+
def forward(
|
363 |
+
self,
|
364 |
+
x: torch.Tensor,
|
365 |
+
x_mask: torch.Tensor,
|
366 |
+
offset: Union[int, torch.Tensor] = 0
|
367 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
368 |
+
"""Input x.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
372 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
373 |
+
|
374 |
+
Returns:
|
375 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
376 |
+
where time' = time .
|
377 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
378 |
+
where time' = time .
|
379 |
+
|
380 |
+
"""
|
381 |
+
x = self.out(x)
|
382 |
+
x, pos_emb = self.pos_enc(x, offset)
|
383 |
+
return x, pos_emb, x_mask
|
cosyvoice/utils/__init__.py
ADDED
File without changes
|
cosyvoice/utils/class_utils.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright [2023-11-28] <[email protected], Xingchen Song>
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from cosyvoice.transformer.activation import Swish
|
18 |
+
from cosyvoice.transformer.subsampling import (
|
19 |
+
LinearNoSubsampling,
|
20 |
+
EmbedinigNoSubsampling,
|
21 |
+
Conv1dSubsampling2,
|
22 |
+
Conv2dSubsampling4,
|
23 |
+
Conv2dSubsampling6,
|
24 |
+
Conv2dSubsampling8,
|
25 |
+
)
|
26 |
+
from cosyvoice.transformer.embedding import (PositionalEncoding,
|
27 |
+
RelPositionalEncoding,
|
28 |
+
WhisperPositionalEncoding,
|
29 |
+
LearnablePositionalEncoding,
|
30 |
+
NoPositionalEncoding)
|
31 |
+
from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
32 |
+
RelPositionMultiHeadedAttention)
|
33 |
+
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
34 |
+
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
35 |
+
|
36 |
+
|
37 |
+
COSYVOICE_ACTIVATION_CLASSES = {
|
38 |
+
"hardtanh": torch.nn.Hardtanh,
|
39 |
+
"tanh": torch.nn.Tanh,
|
40 |
+
"relu": torch.nn.ReLU,
|
41 |
+
"selu": torch.nn.SELU,
|
42 |
+
"swish": getattr(torch.nn, "SiLU", Swish),
|
43 |
+
"gelu": torch.nn.GELU,
|
44 |
+
}
|
45 |
+
|
46 |
+
COSYVOICE_SUBSAMPLE_CLASSES = {
|
47 |
+
"linear": LinearNoSubsampling,
|
48 |
+
"linear_legacy": LegacyLinearNoSubsampling,
|
49 |
+
"embed": EmbedinigNoSubsampling,
|
50 |
+
"conv1d2": Conv1dSubsampling2,
|
51 |
+
"conv2d": Conv2dSubsampling4,
|
52 |
+
"conv2d6": Conv2dSubsampling6,
|
53 |
+
"conv2d8": Conv2dSubsampling8,
|
54 |
+
'paraformer_dummy': torch.nn.Identity
|
55 |
+
}
|
56 |
+
|
57 |
+
COSYVOICE_EMB_CLASSES = {
|
58 |
+
"embed": PositionalEncoding,
|
59 |
+
"abs_pos": PositionalEncoding,
|
60 |
+
"rel_pos": RelPositionalEncoding,
|
61 |
+
"rel_pos_espnet": EspnetRelPositionalEncoding,
|
62 |
+
"no_pos": NoPositionalEncoding,
|
63 |
+
"abs_pos_whisper": WhisperPositionalEncoding,
|
64 |
+
"embed_learnable_pe": LearnablePositionalEncoding,
|
65 |
+
}
|
66 |
+
|
67 |
+
COSYVOICE_ATTENTION_CLASSES = {
|
68 |
+
"selfattn": MultiHeadedAttention,
|
69 |
+
"rel_selfattn": RelPositionMultiHeadedAttention,
|
70 |
+
}
|
cosyvoice/utils/common.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Unility functions for Transformer."""
|
17 |
+
|
18 |
+
from typing import List
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
IGNORE_ID = -1
|
23 |
+
|
24 |
+
|
25 |
+
def pad_list(xs: List[torch.Tensor], pad_value: int):
|
26 |
+
"""Perform padding for the list of tensors.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
30 |
+
pad_value (float): Value for padding.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
Tensor: Padded tensor (B, Tmax, `*`).
|
34 |
+
|
35 |
+
Examples:
|
36 |
+
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
|
37 |
+
>>> x
|
38 |
+
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
|
39 |
+
>>> pad_list(x, 0)
|
40 |
+
tensor([[1., 1., 1., 1.],
|
41 |
+
[1., 1., 0., 0.],
|
42 |
+
[1., 0., 0., 0.]])
|
43 |
+
|
44 |
+
"""
|
45 |
+
max_len = max([len(item) for item in xs])
|
46 |
+
batchs = len(xs)
|
47 |
+
ndim = xs[0].ndim
|
48 |
+
if ndim == 1:
|
49 |
+
pad_res = torch.zeros(batchs,
|
50 |
+
max_len,
|
51 |
+
dtype=xs[0].dtype,
|
52 |
+
device=xs[0].device)
|
53 |
+
elif ndim == 2:
|
54 |
+
pad_res = torch.zeros(batchs,
|
55 |
+
max_len,
|
56 |
+
xs[0].shape[1],
|
57 |
+
dtype=xs[0].dtype,
|
58 |
+
device=xs[0].device)
|
59 |
+
elif ndim == 3:
|
60 |
+
pad_res = torch.zeros(batchs,
|
61 |
+
max_len,
|
62 |
+
xs[0].shape[1],
|
63 |
+
xs[0].shape[2],
|
64 |
+
dtype=xs[0].dtype,
|
65 |
+
device=xs[0].device)
|
66 |
+
else:
|
67 |
+
raise ValueError(f"Unsupported ndim: {ndim}")
|
68 |
+
pad_res.fill_(pad_value)
|
69 |
+
for i in range(batchs):
|
70 |
+
pad_res[i, :len(xs[i])] = xs[i]
|
71 |
+
return pad_res
|
72 |
+
|
73 |
+
|
74 |
+
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
|
75 |
+
ignore_label: int) -> torch.Tensor:
|
76 |
+
"""Calculate accuracy.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
|
80 |
+
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
81 |
+
ignore_label (int): Ignore label id.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Accuracy value (0.0 - 1.0).
|
85 |
+
|
86 |
+
"""
|
87 |
+
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
|
88 |
+
pad_outputs.size(1)).argmax(2)
|
89 |
+
mask = pad_targets != ignore_label
|
90 |
+
numerator = torch.sum(
|
91 |
+
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
|
92 |
+
denominator = torch.sum(mask)
|
93 |
+
return (numerator / denominator).detach()
|
94 |
+
|
95 |
+
|
96 |
+
def get_padding(kernel_size, dilation=1):
|
97 |
+
return int((kernel_size * dilation - dilation) / 2)
|
98 |
+
|
99 |
+
|
100 |
+
def init_weights(m, mean=0.0, std=0.01):
|
101 |
+
classname = m.__class__.__name__
|
102 |
+
if classname.find("Conv") != -1:
|
103 |
+
m.weight.data.normal_(mean, std)
|
cosyvoice/utils/executor.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import logging
|
17 |
+
from contextlib import nullcontext
|
18 |
+
import os
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.distributed as dist
|
22 |
+
|
23 |
+
from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
|
24 |
+
|
25 |
+
|
26 |
+
class Executor:
|
27 |
+
|
28 |
+
def __init__(self):
|
29 |
+
self.step = 0
|
30 |
+
self.epoch = 0
|
31 |
+
self.rank = int(os.environ.get('RANK', 0))
|
32 |
+
self.device = torch.device('cuda:{}'.format(self.rank))
|
33 |
+
|
34 |
+
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join):
|
35 |
+
''' Train one epoch
|
36 |
+
'''
|
37 |
+
|
38 |
+
lr = optimizer.param_groups[0]['lr']
|
39 |
+
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
40 |
+
logging.info('using accumulate grad, new batch size is {} times'
|
41 |
+
' larger than before'.format(info_dict['accum_grad']))
|
42 |
+
# A context manager to be used in conjunction with an instance of
|
43 |
+
# torch.nn.parallel.DistributedDataParallel to be able to train
|
44 |
+
# with uneven inputs across participating processes.
|
45 |
+
model.train()
|
46 |
+
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
47 |
+
with model_context():
|
48 |
+
for batch_idx, batch_dict in enumerate(train_data_loader):
|
49 |
+
info_dict["tag"] = "TRAIN"
|
50 |
+
info_dict["step"] = self.step
|
51 |
+
info_dict["epoch"] = self.epoch
|
52 |
+
info_dict["batch_idx"] = batch_idx
|
53 |
+
if cosyvoice_join(group_join, info_dict):
|
54 |
+
break
|
55 |
+
|
56 |
+
# Disable gradient synchronizations across DDP processes.
|
57 |
+
# Within this context, gradients will be accumulated on module
|
58 |
+
# variables, which will later be synchronized.
|
59 |
+
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
60 |
+
context = model.no_sync
|
61 |
+
# Used for single gpu training and DDP gradient synchronization
|
62 |
+
# processes.
|
63 |
+
else:
|
64 |
+
context = nullcontext
|
65 |
+
|
66 |
+
with context():
|
67 |
+
info_dict = batch_forward(model, batch_dict, info_dict)
|
68 |
+
info_dict = batch_backward(model, info_dict)
|
69 |
+
|
70 |
+
info_dict = update_parameter_and_lr(model, optimizer, scheduler, info_dict)
|
71 |
+
log_per_step(writer, info_dict)
|
72 |
+
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
73 |
+
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
74 |
+
dist.barrier()
|
75 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
76 |
+
model.train()
|
77 |
+
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
78 |
+
self.step += 1
|
79 |
+
dist.barrier()
|
80 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
81 |
+
|
82 |
+
@torch.inference_mode()
|
83 |
+
def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True):
|
84 |
+
''' Cross validation on
|
85 |
+
'''
|
86 |
+
logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
|
87 |
+
model.eval()
|
88 |
+
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
|
89 |
+
for batch_idx, batch_dict in enumerate(cv_data_loader):
|
90 |
+
info_dict["tag"] = "CV"
|
91 |
+
info_dict["step"] = self.step
|
92 |
+
info_dict["epoch"] = self.epoch
|
93 |
+
info_dict["batch_idx"] = batch_idx
|
94 |
+
|
95 |
+
num_utts = len(batch_dict["utts"])
|
96 |
+
total_num_utts += num_utts
|
97 |
+
|
98 |
+
info_dict = batch_forward(model, batch_dict, info_dict)
|
99 |
+
|
100 |
+
for k, v in info_dict['loss_dict'].items():
|
101 |
+
if k not in total_loss_dict:
|
102 |
+
total_loss_dict[k] = []
|
103 |
+
total_loss_dict[k].append(v.item() * num_utts)
|
104 |
+
log_per_step(None, info_dict)
|
105 |
+
for k, v in total_loss_dict.items():
|
106 |
+
total_loss_dict[k] = sum(v) / total_num_utts
|
107 |
+
info_dict['loss_dict'] = total_loss_dict
|
108 |
+
log_per_save(writer, info_dict)
|
109 |
+
model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
|
110 |
+
save_model(model, model_name, info_dict)
|
cosyvoice/utils/file_utils.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import torchaudio
|
18 |
+
|
19 |
+
|
20 |
+
def read_lists(list_file):
|
21 |
+
lists = []
|
22 |
+
with open(list_file, 'r', encoding='utf8') as fin:
|
23 |
+
for line in fin:
|
24 |
+
lists.append(line.strip())
|
25 |
+
return lists
|
26 |
+
|
27 |
+
def read_json_lists(list_file):
|
28 |
+
lists = read_lists(list_file)
|
29 |
+
results = {}
|
30 |
+
for fn in lists:
|
31 |
+
with open(fn, 'r', encoding='utf8') as fin:
|
32 |
+
results.update(json.load(fin))
|
33 |
+
return results
|
34 |
+
|
35 |
+
def load_wav(wav, target_sr):
|
36 |
+
speech, sample_rate = torchaudio.load(wav)
|
37 |
+
speech = speech.mean(dim=0, keepdim=True)
|
38 |
+
if sample_rate != target_sr:
|
39 |
+
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
40 |
+
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
41 |
+
return speech
|
cosyvoice/utils/frontend_utils.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import re
|
16 |
+
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
17 |
+
|
18 |
+
# whether contain chinese character
|
19 |
+
def contains_chinese(text):
|
20 |
+
return bool(chinese_char_pattern.search(text))
|
21 |
+
|
22 |
+
|
23 |
+
# replace special symbol
|
24 |
+
def replace_corner_mark(text):
|
25 |
+
text = text.replace('²', '平方')
|
26 |
+
text = text.replace('³', '立方')
|
27 |
+
return text
|
28 |
+
|
29 |
+
|
30 |
+
# remove meaningless symbol
|
31 |
+
def remove_bracket(text):
|
32 |
+
text = text.replace('(', '').replace(')', '')
|
33 |
+
text = text.replace('【', '').replace('】', '')
|
34 |
+
text = text.replace('`', '').replace('`', '')
|
35 |
+
text = text.replace("——", " ")
|
36 |
+
return text
|
37 |
+
|
38 |
+
|
39 |
+
# spell Arabic numerals
|
40 |
+
def spell_out_number(text: str, inflect_parser):
|
41 |
+
new_text = []
|
42 |
+
st = None
|
43 |
+
for i, c in enumerate(text):
|
44 |
+
if not c.isdigit():
|
45 |
+
if st is not None:
|
46 |
+
num_str = inflect_parser.number_to_words(text[st: i])
|
47 |
+
new_text.append(num_str)
|
48 |
+
st = None
|
49 |
+
new_text.append(c)
|
50 |
+
else:
|
51 |
+
if st is None:
|
52 |
+
st = i
|
53 |
+
if st is not None and st < len(text):
|
54 |
+
num_str = inflect_parser.number_to_words(text[st:])
|
55 |
+
new_text.append(num_str)
|
56 |
+
return ''.join(new_text)
|
57 |
+
|
58 |
+
|
59 |
+
# split paragrah logic:
|
60 |
+
# 1. per sentence max len token_max_n, min len token_min_n, merge if last sentence len less than merge_len
|
61 |
+
# 2. cal sentence len according to lang
|
62 |
+
# 3. split sentence according to puncatation
|
63 |
+
def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=60, merge_len=20, comma_split=False):
|
64 |
+
def calc_utt_length(_text: str):
|
65 |
+
if lang == "zh":
|
66 |
+
return len(_text)
|
67 |
+
else:
|
68 |
+
return len(tokenize(_text))
|
69 |
+
|
70 |
+
def should_merge(_text: str):
|
71 |
+
if lang == "zh":
|
72 |
+
return len(_text) < merge_len
|
73 |
+
else:
|
74 |
+
return len(tokenize(_text)) < merge_len
|
75 |
+
|
76 |
+
if lang == "zh":
|
77 |
+
pounc = ['。', '?', '!', ';', ':', '、', '.', '?', '!', ';']
|
78 |
+
else:
|
79 |
+
pounc = ['.', '?', '!', ';', ':']
|
80 |
+
if comma_split:
|
81 |
+
pounc.extend([',', ','])
|
82 |
+
st = 0
|
83 |
+
utts = []
|
84 |
+
for i, c in enumerate(text):
|
85 |
+
if c in pounc:
|
86 |
+
if len(text[st: i]) > 0:
|
87 |
+
utts.append(text[st: i] + c)
|
88 |
+
if i + 1 < len(text) and text[i + 1] in ['"', '”']:
|
89 |
+
tmp = utts.pop(-1)
|
90 |
+
utts.append(tmp + text[i + 1])
|
91 |
+
st = i + 2
|
92 |
+
else:
|
93 |
+
st = i + 1
|
94 |
+
if len(utts) == 0:
|
95 |
+
if lang == "zh":
|
96 |
+
utts.append(text + '。')
|
97 |
+
else:
|
98 |
+
utts.append(text + '.')
|
99 |
+
final_utts = []
|
100 |
+
cur_utt = ""
|
101 |
+
for utt in utts:
|
102 |
+
if calc_utt_length(cur_utt + utt) > token_max_n and calc_utt_length(cur_utt) > token_min_n:
|
103 |
+
final_utts.append(cur_utt)
|
104 |
+
cur_utt = ""
|
105 |
+
cur_utt = cur_utt + utt
|
106 |
+
if len(cur_utt) > 0:
|
107 |
+
if should_merge(cur_utt) and len(final_utts) != 0:
|
108 |
+
final_utts[-1] = final_utts[-1] + cur_utt
|
109 |
+
else:
|
110 |
+
final_utts.append(cur_utt)
|
111 |
+
|
112 |
+
return final_utts
|
113 |
+
|
114 |
+
|
115 |
+
# remove blank between chinese character
|
116 |
+
def replace_blank(text: str):
|
117 |
+
out_str = []
|
118 |
+
for i, c in enumerate(text):
|
119 |
+
if c == " ":
|
120 |
+
if ((text[i + 1].isascii() and text[i + 1] != " ") and
|
121 |
+
(text[i - 1].isascii() and text[i - 1] != " ")):
|
122 |
+
out_str.append(c)
|
123 |
+
else:
|
124 |
+
out_str.append(c)
|
125 |
+
return "".join(out_str)
|
cosyvoice/utils/mask.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import torch
|
18 |
+
'''
|
19 |
+
def subsequent_mask(
|
20 |
+
size: int,
|
21 |
+
device: torch.device = torch.device("cpu"),
|
22 |
+
) -> torch.Tensor:
|
23 |
+
"""Create mask for subsequent steps (size, size).
|
24 |
+
|
25 |
+
This mask is used only in decoder which works in an auto-regressive mode.
|
26 |
+
This means the current step could only do attention with its left steps.
|
27 |
+
|
28 |
+
In encoder, fully attention is used when streaming is not necessary and
|
29 |
+
the sequence is not long. In this case, no attention mask is needed.
|
30 |
+
|
31 |
+
When streaming is need, chunk-based attention is used in encoder. See
|
32 |
+
subsequent_chunk_mask for the chunk-based attention mask.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
size (int): size of mask
|
36 |
+
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
37 |
+
dtype (torch.device): result dtype
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
torch.Tensor: mask
|
41 |
+
|
42 |
+
Examples:
|
43 |
+
>>> subsequent_mask(3)
|
44 |
+
[[1, 0, 0],
|
45 |
+
[1, 1, 0],
|
46 |
+
[1, 1, 1]]
|
47 |
+
"""
|
48 |
+
ret = torch.ones(size, size, device=device, dtype=torch.bool)
|
49 |
+
return torch.tril(ret)
|
50 |
+
'''
|
51 |
+
|
52 |
+
|
53 |
+
def subsequent_mask(
|
54 |
+
size: int,
|
55 |
+
device: torch.device = torch.device("cpu"),
|
56 |
+
) -> torch.Tensor:
|
57 |
+
"""Create mask for subsequent steps (size, size).
|
58 |
+
|
59 |
+
This mask is used only in decoder which works in an auto-regressive mode.
|
60 |
+
This means the current step could only do attention with its left steps.
|
61 |
+
|
62 |
+
In encoder, fully attention is used when streaming is not necessary and
|
63 |
+
the sequence is not long. In this case, no attention mask is needed.
|
64 |
+
|
65 |
+
When streaming is need, chunk-based attention is used in encoder. See
|
66 |
+
subsequent_chunk_mask for the chunk-based attention mask.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
size (int): size of mask
|
70 |
+
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
71 |
+
dtype (torch.device): result dtype
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
torch.Tensor: mask
|
75 |
+
|
76 |
+
Examples:
|
77 |
+
>>> subsequent_mask(3)
|
78 |
+
[[1, 0, 0],
|
79 |
+
[1, 1, 0],
|
80 |
+
[1, 1, 1]]
|
81 |
+
"""
|
82 |
+
arange = torch.arange(size, device=device)
|
83 |
+
mask = arange.expand(size, size)
|
84 |
+
arange = arange.unsqueeze(-1)
|
85 |
+
mask = mask <= arange
|
86 |
+
return mask
|
87 |
+
|
88 |
+
|
89 |
+
def subsequent_chunk_mask(
|
90 |
+
size: int,
|
91 |
+
chunk_size: int,
|
92 |
+
num_left_chunks: int = -1,
|
93 |
+
device: torch.device = torch.device("cpu"),
|
94 |
+
) -> torch.Tensor:
|
95 |
+
"""Create mask for subsequent steps (size, size) with chunk size,
|
96 |
+
this is for streaming encoder
|
97 |
+
|
98 |
+
Args:
|
99 |
+
size (int): size of mask
|
100 |
+
chunk_size (int): size of chunk
|
101 |
+
num_left_chunks (int): number of left chunks
|
102 |
+
<0: use full chunk
|
103 |
+
>=0: use num_left_chunks
|
104 |
+
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
torch.Tensor: mask
|
108 |
+
|
109 |
+
Examples:
|
110 |
+
>>> subsequent_chunk_mask(4, 2)
|
111 |
+
[[1, 1, 0, 0],
|
112 |
+
[1, 1, 0, 0],
|
113 |
+
[1, 1, 1, 1],
|
114 |
+
[1, 1, 1, 1]]
|
115 |
+
"""
|
116 |
+
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
|
117 |
+
for i in range(size):
|
118 |
+
if num_left_chunks < 0:
|
119 |
+
start = 0
|
120 |
+
else:
|
121 |
+
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
|
122 |
+
ending = min((i // chunk_size + 1) * chunk_size, size)
|
123 |
+
ret[i, start:ending] = True
|
124 |
+
return ret
|
125 |
+
|
126 |
+
|
127 |
+
def add_optional_chunk_mask(xs: torch.Tensor,
|
128 |
+
masks: torch.Tensor,
|
129 |
+
use_dynamic_chunk: bool,
|
130 |
+
use_dynamic_left_chunk: bool,
|
131 |
+
decoding_chunk_size: int,
|
132 |
+
static_chunk_size: int,
|
133 |
+
num_decoding_left_chunks: int,
|
134 |
+
enable_full_context: bool = True):
|
135 |
+
""" Apply optional mask for encoder.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
xs (torch.Tensor): padded input, (B, L, D), L for max length
|
139 |
+
mask (torch.Tensor): mask for xs, (B, 1, L)
|
140 |
+
use_dynamic_chunk (bool): whether to use dynamic chunk or not
|
141 |
+
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
|
142 |
+
training.
|
143 |
+
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
|
144 |
+
0: default for training, use random dynamic chunk.
|
145 |
+
<0: for decoding, use full chunk.
|
146 |
+
>0: for decoding, use fixed chunk size as set.
|
147 |
+
static_chunk_size (int): chunk size for static chunk training/decoding
|
148 |
+
if it's greater than 0, if use_dynamic_chunk is true,
|
149 |
+
this parameter will be ignored
|
150 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
151 |
+
the chunk size is decoding_chunk_size.
|
152 |
+
>=0: use num_decoding_left_chunks
|
153 |
+
<0: use all left chunks
|
154 |
+
enable_full_context (bool):
|
155 |
+
True: chunk size is either [1, 25] or full context(max_len)
|
156 |
+
False: chunk size ~ U[1, 25]
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
torch.Tensor: chunk mask of the input xs.
|
160 |
+
"""
|
161 |
+
# Whether to use chunk mask or not
|
162 |
+
if use_dynamic_chunk:
|
163 |
+
max_len = xs.size(1)
|
164 |
+
if decoding_chunk_size < 0:
|
165 |
+
chunk_size = max_len
|
166 |
+
num_left_chunks = -1
|
167 |
+
elif decoding_chunk_size > 0:
|
168 |
+
chunk_size = decoding_chunk_size
|
169 |
+
num_left_chunks = num_decoding_left_chunks
|
170 |
+
else:
|
171 |
+
# chunk size is either [1, 25] or full context(max_len).
|
172 |
+
# Since we use 4 times subsampling and allow up to 1s(100 frames)
|
173 |
+
# delay, the maximum frame is 100 / 4 = 25.
|
174 |
+
chunk_size = torch.randint(1, max_len, (1, )).item()
|
175 |
+
num_left_chunks = -1
|
176 |
+
if chunk_size > max_len // 2 and enable_full_context:
|
177 |
+
chunk_size = max_len
|
178 |
+
else:
|
179 |
+
chunk_size = chunk_size % 25 + 1
|
180 |
+
if use_dynamic_left_chunk:
|
181 |
+
max_left_chunks = (max_len - 1) // chunk_size
|
182 |
+
num_left_chunks = torch.randint(0, max_left_chunks,
|
183 |
+
(1, )).item()
|
184 |
+
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size,
|
185 |
+
num_left_chunks,
|
186 |
+
xs.device) # (L, L)
|
187 |
+
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
188 |
+
chunk_masks = masks & chunk_masks # (B, L, L)
|
189 |
+
elif static_chunk_size > 0:
|
190 |
+
num_left_chunks = num_decoding_left_chunks
|
191 |
+
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size,
|
192 |
+
num_left_chunks,
|
193 |
+
xs.device) # (L, L)
|
194 |
+
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
195 |
+
chunk_masks = masks & chunk_masks # (B, L, L)
|
196 |
+
else:
|
197 |
+
chunk_masks = masks
|
198 |
+
return chunk_masks
|
199 |
+
|
200 |
+
|
201 |
+
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
202 |
+
"""Make mask tensor containing indices of padded part.
|
203 |
+
|
204 |
+
See description of make_non_pad_mask.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
lengths (torch.Tensor): Batch of lengths (B,).
|
208 |
+
Returns:
|
209 |
+
torch.Tensor: Mask tensor containing indices of padded part.
|
210 |
+
|
211 |
+
Examples:
|
212 |
+
>>> lengths = [5, 3, 2]
|
213 |
+
>>> make_pad_mask(lengths)
|
214 |
+
masks = [[0, 0, 0, 0 ,0],
|
215 |
+
[0, 0, 0, 1, 1],
|
216 |
+
[0, 0, 1, 1, 1]]
|
217 |
+
"""
|
218 |
+
batch_size = lengths.size(0)
|
219 |
+
max_len = max_len if max_len > 0 else lengths.max().item()
|
220 |
+
seq_range = torch.arange(0,
|
221 |
+
max_len,
|
222 |
+
dtype=torch.int64,
|
223 |
+
device=lengths.device)
|
224 |
+
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
225 |
+
seq_length_expand = lengths.unsqueeze(-1)
|
226 |
+
mask = seq_range_expand >= seq_length_expand
|
227 |
+
return mask
|
cosyvoice/utils/scheduler.py
ADDED
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2022 Ximalaya Inc (Yuguang Yang)
|
3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
# NeMo(https://github.com/NVIDIA/NeMo)
|
18 |
+
|
19 |
+
from typing import Union
|
20 |
+
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
import torch
|
24 |
+
from torch.optim.lr_scheduler import _LRScheduler
|
25 |
+
|
26 |
+
|
27 |
+
class WarmupLR(_LRScheduler):
|
28 |
+
"""The WarmupLR scheduler
|
29 |
+
|
30 |
+
This scheduler is almost same as NoamLR Scheduler except for following
|
31 |
+
difference:
|
32 |
+
|
33 |
+
NoamLR:
|
34 |
+
lr = optimizer.lr * model_size ** -0.5
|
35 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
36 |
+
WarmupLR:
|
37 |
+
lr = optimizer.lr * warmup_step ** 0.5
|
38 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
39 |
+
|
40 |
+
Note that the maximum lr equals to optimizer.lr in this scheduler.
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
optimizer: torch.optim.Optimizer,
|
47 |
+
warmup_steps: Union[int, float] = 25000,
|
48 |
+
last_epoch: int = -1,
|
49 |
+
):
|
50 |
+
self.warmup_steps = warmup_steps
|
51 |
+
|
52 |
+
# __init__() must be invoked before setting field
|
53 |
+
# because step() is also invoked in __init__()
|
54 |
+
super().__init__(optimizer, last_epoch)
|
55 |
+
|
56 |
+
def __repr__(self):
|
57 |
+
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
|
58 |
+
|
59 |
+
def get_lr(self):
|
60 |
+
step_num = self.last_epoch + 1
|
61 |
+
if self.warmup_steps == 0:
|
62 |
+
return [lr * step_num**-0.5 for lr in self.base_lrs]
|
63 |
+
else:
|
64 |
+
return [
|
65 |
+
lr * self.warmup_steps**0.5 *
|
66 |
+
min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
67 |
+
for lr in self.base_lrs
|
68 |
+
]
|
69 |
+
|
70 |
+
def set_step(self, step: int):
|
71 |
+
self.last_epoch = step
|
72 |
+
|
73 |
+
|
74 |
+
class WarmupPolicy(_LRScheduler):
|
75 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
76 |
+
All arguments should be passed as kwargs for clarity,
|
77 |
+
Args:
|
78 |
+
warmup_steps: Number of training steps in warmup stage
|
79 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
80 |
+
max_steps: Total number of steps while training or `None` for
|
81 |
+
infinite training
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self,
|
85 |
+
optimizer,
|
86 |
+
*,
|
87 |
+
warmup_steps=None,
|
88 |
+
warmup_ratio=None,
|
89 |
+
max_steps=None,
|
90 |
+
min_lr=0.0,
|
91 |
+
last_epoch=-1):
|
92 |
+
assert not (warmup_steps is not None and warmup_ratio is not None),\
|
93 |
+
"Either use particular number of step or ratio"
|
94 |
+
assert warmup_ratio is None or max_steps is not None, \
|
95 |
+
"If there is a ratio, there should be a total steps"
|
96 |
+
|
97 |
+
# It is necessary to assign all attributes *before* __init__,
|
98 |
+
# as class is wrapped by an inner class.
|
99 |
+
self.max_steps = max_steps
|
100 |
+
if warmup_steps is not None:
|
101 |
+
self.warmup_steps = warmup_steps
|
102 |
+
elif warmup_ratio is not None:
|
103 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
104 |
+
else:
|
105 |
+
self.warmup_steps = 0
|
106 |
+
|
107 |
+
self.min_lr = min_lr
|
108 |
+
super().__init__(optimizer, last_epoch)
|
109 |
+
|
110 |
+
def get_lr(self):
|
111 |
+
if not self._get_lr_called_within_step:
|
112 |
+
warnings.warn(
|
113 |
+
"To get the last learning rate computed "
|
114 |
+
"by the scheduler, please use `get_last_lr()`.",
|
115 |
+
UserWarning,
|
116 |
+
stacklevel=2)
|
117 |
+
|
118 |
+
step = self.last_epoch
|
119 |
+
|
120 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
121 |
+
return self._get_warmup_lr(step)
|
122 |
+
|
123 |
+
if step > self.max_steps:
|
124 |
+
return [self.min_lr for _ in self.base_lrs]
|
125 |
+
|
126 |
+
return self._get_lr(step)
|
127 |
+
|
128 |
+
def _get_warmup_lr(self, step):
|
129 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
130 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
131 |
+
|
132 |
+
def _get_lr(self, step):
|
133 |
+
"""Simple const lr policy"""
|
134 |
+
return self.base_lrs
|
135 |
+
|
136 |
+
|
137 |
+
class SquareRootConstantPolicy(_LRScheduler):
|
138 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
139 |
+
All arguments should be passed as kwargs for clarity,
|
140 |
+
Args:
|
141 |
+
warmup_steps: Number of training steps in warmup stage
|
142 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
143 |
+
max_steps: Total number of steps while training or `None` for
|
144 |
+
infinite training
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(self,
|
148 |
+
optimizer,
|
149 |
+
*,
|
150 |
+
constant_steps=None,
|
151 |
+
constant_ratio=None,
|
152 |
+
max_steps=None,
|
153 |
+
min_lr=0.0,
|
154 |
+
last_epoch=-1):
|
155 |
+
assert not (constant_steps is not None
|
156 |
+
and constant_ratio is not None), \
|
157 |
+
"Either use particular number of step or ratio"
|
158 |
+
assert constant_ratio is None or max_steps is not None, \
|
159 |
+
"If there is a ratio, there should be a total steps"
|
160 |
+
|
161 |
+
# It is necessary to assign all attributes *before* __init__,
|
162 |
+
# as class is wrapped by an inner class.
|
163 |
+
self.max_steps = max_steps
|
164 |
+
if constant_steps is not None:
|
165 |
+
self.constant_steps = constant_steps
|
166 |
+
elif constant_ratio is not None:
|
167 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
168 |
+
else:
|
169 |
+
self.constant_steps = 0
|
170 |
+
|
171 |
+
self.constant_lr = 1 / (constant_steps**0.5)
|
172 |
+
self.min_lr = min_lr
|
173 |
+
super().__init__(optimizer, last_epoch)
|
174 |
+
|
175 |
+
def get_lr(self):
|
176 |
+
if not self._get_lr_called_within_step:
|
177 |
+
warnings.warn(
|
178 |
+
"To get the last learning rate computed "
|
179 |
+
"by the scheduler, please use `get_last_lr()`.",
|
180 |
+
UserWarning,
|
181 |
+
stacklevel=2)
|
182 |
+
|
183 |
+
step = self.last_epoch
|
184 |
+
|
185 |
+
if step <= self.constant_steps:
|
186 |
+
return [self.constant_lr for _ in self.base_lrs]
|
187 |
+
|
188 |
+
if step > self.max_steps:
|
189 |
+
return [self.min_lr for _ in self.base_lrs]
|
190 |
+
|
191 |
+
return self._get_lr(step)
|
192 |
+
|
193 |
+
def _get_lr(self, step):
|
194 |
+
"""Simple const lr policy"""
|
195 |
+
return self.base_lrs
|
196 |
+
|
197 |
+
|
198 |
+
class WarmupHoldPolicy(WarmupPolicy):
|
199 |
+
"""Variant of WarmupPolicy which maintains high
|
200 |
+
learning rate for a defined number of steps.
|
201 |
+
All arguments should be passed as kwargs for clarity,
|
202 |
+
Args:
|
203 |
+
warmup_steps: Number of training steps in warmup stage
|
204 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
205 |
+
hold_steps: Number of training steps to
|
206 |
+
hold the learning rate after warm up
|
207 |
+
hold_ratio: Ratio of hold steps to total steps
|
208 |
+
max_steps: Total number of steps while training or `None` for
|
209 |
+
infinite training
|
210 |
+
"""
|
211 |
+
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
optimizer,
|
215 |
+
*,
|
216 |
+
warmup_steps=None,
|
217 |
+
warmup_ratio=None,
|
218 |
+
hold_steps=None,
|
219 |
+
hold_ratio=None,
|
220 |
+
max_steps=None,
|
221 |
+
min_lr=0.0,
|
222 |
+
last_epoch=-1,
|
223 |
+
):
|
224 |
+
assert not (hold_steps is not None and hold_ratio is not None), \
|
225 |
+
"Either use particular number of step or ratio"
|
226 |
+
assert hold_ratio is None or max_steps is not None, \
|
227 |
+
"If there is a ratio, there should be a total steps"
|
228 |
+
|
229 |
+
self.min_lr = min_lr
|
230 |
+
self._last_warmup_lr = 0.0
|
231 |
+
|
232 |
+
# Necessary to duplicate as class attributes are hidden in inner class
|
233 |
+
self.max_steps = max_steps
|
234 |
+
if warmup_steps is not None:
|
235 |
+
self.warmup_steps = warmup_steps
|
236 |
+
elif warmup_ratio is not None:
|
237 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
238 |
+
else:
|
239 |
+
self.warmup_steps = 0
|
240 |
+
|
241 |
+
if hold_steps is not None:
|
242 |
+
self.hold_steps = hold_steps + self.warmup_steps
|
243 |
+
elif hold_ratio is not None:
|
244 |
+
self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
|
245 |
+
else:
|
246 |
+
self.hold_steps = 0
|
247 |
+
|
248 |
+
super().__init__(
|
249 |
+
optimizer,
|
250 |
+
warmup_steps=warmup_steps,
|
251 |
+
warmup_ratio=warmup_ratio,
|
252 |
+
max_steps=max_steps,
|
253 |
+
last_epoch=last_epoch,
|
254 |
+
min_lr=min_lr,
|
255 |
+
)
|
256 |
+
|
257 |
+
def get_lr(self):
|
258 |
+
if not self._get_lr_called_within_step:
|
259 |
+
warnings.warn(
|
260 |
+
"To get the last learning rate computed by the scheduler,"
|
261 |
+
" "
|
262 |
+
"please use `get_last_lr()`.",
|
263 |
+
UserWarning,
|
264 |
+
stacklevel=2)
|
265 |
+
|
266 |
+
step = self.last_epoch
|
267 |
+
|
268 |
+
# Warmup phase
|
269 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
270 |
+
return self._get_warmup_lr(step)
|
271 |
+
|
272 |
+
# Hold phase
|
273 |
+
if (step >= self.warmup_steps) and (step < self.hold_steps):
|
274 |
+
return self.base_lrs
|
275 |
+
|
276 |
+
if step > self.max_steps:
|
277 |
+
return [self.min_lr for _ in self.base_lrs]
|
278 |
+
|
279 |
+
return self._get_lr(step)
|
280 |
+
|
281 |
+
|
282 |
+
class WarmupAnnealHoldPolicy(_LRScheduler):
|
283 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
284 |
+
All arguments should be passed as kwargs for clarity,
|
285 |
+
Args:
|
286 |
+
warmup_steps: Number of training steps in warmup stage
|
287 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
288 |
+
max_steps: Total number of steps while training or `None` for
|
289 |
+
infinite training
|
290 |
+
min_lr: Minimum lr to hold the learning rate after decay at.
|
291 |
+
constant_steps: Number of steps to keep lr constant at.
|
292 |
+
constant_ratio: Ratio of steps to keep lr constant.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(
|
296 |
+
self,
|
297 |
+
optimizer,
|
298 |
+
*,
|
299 |
+
warmup_steps=None,
|
300 |
+
warmup_ratio=None,
|
301 |
+
constant_steps=None,
|
302 |
+
constant_ratio=None,
|
303 |
+
max_steps=None,
|
304 |
+
min_lr=0.0,
|
305 |
+
last_epoch=-1,
|
306 |
+
):
|
307 |
+
assert not (warmup_steps is not None
|
308 |
+
and warmup_ratio is not None), \
|
309 |
+
"Either use particular number of step or ratio"
|
310 |
+
assert not (constant_steps is not None
|
311 |
+
and constant_ratio is not None), \
|
312 |
+
"Either use constant_steps or constant_ratio"
|
313 |
+
assert warmup_ratio is None or max_steps is not None, \
|
314 |
+
"If there is a ratio, there should be a total steps"
|
315 |
+
|
316 |
+
# It is necessary to assign all attributes *before* __init__,
|
317 |
+
# as class is wrapped by an inner class.
|
318 |
+
self.max_steps = max_steps
|
319 |
+
|
320 |
+
if warmup_steps is not None:
|
321 |
+
self.warmup_steps = warmup_steps
|
322 |
+
elif warmup_ratio is not None:
|
323 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
324 |
+
else:
|
325 |
+
self.warmup_steps = 0
|
326 |
+
|
327 |
+
if constant_steps is not None:
|
328 |
+
self.constant_steps = constant_steps
|
329 |
+
elif constant_ratio is not None:
|
330 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
331 |
+
else:
|
332 |
+
self.constant_steps = 0
|
333 |
+
|
334 |
+
self.decay_steps = max_steps - (self.constant_steps +
|
335 |
+
self.warmup_steps)
|
336 |
+
|
337 |
+
self.min_lr = min_lr
|
338 |
+
super().__init__(optimizer, last_epoch)
|
339 |
+
|
340 |
+
def get_lr(self):
|
341 |
+
if not self._get_lr_called_within_step:
|
342 |
+
warnings.warn(
|
343 |
+
"To get the last learning rate computed "
|
344 |
+
"by the scheduler, please use `get_last_lr()`.",
|
345 |
+
UserWarning,
|
346 |
+
stacklevel=2)
|
347 |
+
|
348 |
+
step = self.last_epoch
|
349 |
+
|
350 |
+
# Warmup steps
|
351 |
+
if self.warmup_steps > 0 and step <= self.warmup_steps:
|
352 |
+
return self._get_warmup_lr(step)
|
353 |
+
|
354 |
+
# Constant steps after warmup and decay
|
355 |
+
if self.constant_steps > 0 and (
|
356 |
+
self.warmup_steps + self.decay_steps) < step <= self.max_steps:
|
357 |
+
return self._get_constant_lr(step)
|
358 |
+
|
359 |
+
# Min lr after max steps of updates
|
360 |
+
if step > self.max_steps:
|
361 |
+
return [self.min_lr for _ in self.base_lrs]
|
362 |
+
|
363 |
+
return self._get_lr(step)
|
364 |
+
|
365 |
+
def _get_warmup_lr(self, step):
|
366 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
367 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
368 |
+
|
369 |
+
def _get_constant_lr(self, step):
|
370 |
+
return [self.min_lr for _ in self.base_lrs]
|
371 |
+
|
372 |
+
def _get_lr(self, step):
|
373 |
+
"""Simple const lr policy"""
|
374 |
+
return self.base_lrs
|
375 |
+
|
376 |
+
|
377 |
+
def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
|
378 |
+
mult = ((max_steps - step) / max_steps)**0.5
|
379 |
+
out_lr = initial_lr * mult
|
380 |
+
out_lr = max(out_lr, min_lr)
|
381 |
+
return out_lr
|
382 |
+
|
383 |
+
|
384 |
+
def _square_annealing(initial_lr, step, max_steps, min_lr):
|
385 |
+
mult = ((max_steps - step) / max_steps)**2
|
386 |
+
out_lr = initial_lr * mult
|
387 |
+
out_lr = max(out_lr, min_lr)
|
388 |
+
return out_lr
|
389 |
+
|
390 |
+
|
391 |
+
def _cosine_annealing(initial_lr, step, max_steps, min_lr):
|
392 |
+
mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
|
393 |
+
out_lr = (initial_lr - min_lr) * mult + min_lr
|
394 |
+
return out_lr
|
395 |
+
|
396 |
+
|
397 |
+
def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step,
|
398 |
+
decay_steps, min_lr):
|
399 |
+
assert max_lr > min_lr
|
400 |
+
# Use linear warmup for the initial part.
|
401 |
+
if warmup_steps > 0 and step <= warmup_steps:
|
402 |
+
return max_lr * float(step) / float(warmup_steps)
|
403 |
+
|
404 |
+
# For any steps larger than `decay_steps`, use `min_lr`.
|
405 |
+
if step > warmup_steps + decay_steps:
|
406 |
+
return min_lr
|
407 |
+
|
408 |
+
# If we are done with the warmup period, use the decay style.
|
409 |
+
num_steps_ = step - warmup_steps
|
410 |
+
decay_steps_ = decay_steps
|
411 |
+
decay_ratio = float(num_steps_) / float(decay_steps_)
|
412 |
+
assert decay_ratio >= 0.0
|
413 |
+
assert decay_ratio <= 1.0
|
414 |
+
delta_lr = max_lr - min_lr
|
415 |
+
|
416 |
+
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
|
417 |
+
|
418 |
+
return min_lr + coeff * delta_lr
|
419 |
+
|
420 |
+
|
421 |
+
def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
|
422 |
+
if cycle:
|
423 |
+
multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
|
424 |
+
decay_steps *= multiplier
|
425 |
+
else:
|
426 |
+
step = min(step, decay_steps)
|
427 |
+
p = step / decay_steps
|
428 |
+
lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
|
429 |
+
lr += min_lr
|
430 |
+
return lr
|
431 |
+
|
432 |
+
|
433 |
+
def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps,
|
434 |
+
decay_rate, min_lr):
|
435 |
+
# hold_steps = total number of steps
|
436 |
+
# to hold the LR, not the warmup + hold steps.
|
437 |
+
T_warmup_decay = max(1, warmup_steps**decay_rate)
|
438 |
+
T_hold_decay = max(1, (step - hold_steps)**decay_rate)
|
439 |
+
lr = (initial_lr * T_warmup_decay) / T_hold_decay
|
440 |
+
lr = max(lr, min_lr)
|
441 |
+
return lr
|
442 |
+
|
443 |
+
|
444 |
+
class SquareAnnealing(WarmupPolicy):
|
445 |
+
|
446 |
+
def __init__(self,
|
447 |
+
optimizer,
|
448 |
+
*,
|
449 |
+
max_steps,
|
450 |
+
min_lr=1e-5,
|
451 |
+
last_epoch=-1,
|
452 |
+
**kwargs):
|
453 |
+
super().__init__(optimizer=optimizer,
|
454 |
+
max_steps=max_steps,
|
455 |
+
last_epoch=last_epoch,
|
456 |
+
min_lr=min_lr,
|
457 |
+
**kwargs)
|
458 |
+
|
459 |
+
def _get_lr(self, step):
|
460 |
+
new_lrs = [
|
461 |
+
_square_annealing(
|
462 |
+
initial_lr=initial_lr,
|
463 |
+
step=step - self.warmup_steps,
|
464 |
+
max_steps=self.max_steps - self.warmup_steps,
|
465 |
+
min_lr=self.min_lr,
|
466 |
+
) for initial_lr in self.base_lrs
|
467 |
+
]
|
468 |
+
return new_lrs
|
469 |
+
|
470 |
+
|
471 |
+
class SquareRootAnnealing(WarmupPolicy):
|
472 |
+
|
473 |
+
def __init__(self,
|
474 |
+
optimizer,
|
475 |
+
*,
|
476 |
+
max_steps,
|
477 |
+
min_lr=0,
|
478 |
+
last_epoch=-1,
|
479 |
+
**kwargs):
|
480 |
+
super().__init__(optimizer=optimizer,
|
481 |
+
max_steps=max_steps,
|
482 |
+
last_epoch=last_epoch,
|
483 |
+
min_lr=min_lr,
|
484 |
+
**kwargs)
|
485 |
+
|
486 |
+
def _get_lr(self, step):
|
487 |
+
new_lrs = [
|
488 |
+
_squareroot_annealing(initial_lr=initial_lr,
|
489 |
+
step=step,
|
490 |
+
max_steps=self.max_steps,
|
491 |
+
min_lr=self.min_lr)
|
492 |
+
for initial_lr in self.base_lrs
|
493 |
+
]
|
494 |
+
return new_lrs
|
495 |
+
|
496 |
+
|
497 |
+
class CosineAnnealing(WarmupAnnealHoldPolicy):
|
498 |
+
|
499 |
+
def __init__(self,
|
500 |
+
optimizer,
|
501 |
+
*,
|
502 |
+
max_steps,
|
503 |
+
min_lr=0,
|
504 |
+
last_epoch=-1,
|
505 |
+
**kwargs):
|
506 |
+
super().__init__(optimizer=optimizer,
|
507 |
+
max_steps=max_steps,
|
508 |
+
last_epoch=last_epoch,
|
509 |
+
min_lr=min_lr,
|
510 |
+
**kwargs)
|
511 |
+
|
512 |
+
def _get_lr(self, step):
|
513 |
+
for initial_lr in self.base_lrs:
|
514 |
+
if initial_lr < self.min_lr:
|
515 |
+
raise ValueError(
|
516 |
+
f"{self} received an initial learning rate "
|
517 |
+
f"that was lower than the minimum learning rate.")
|
518 |
+
|
519 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
520 |
+
new_lrs = [
|
521 |
+
_cosine_annealing(
|
522 |
+
initial_lr=initial_lr,
|
523 |
+
step=step - self.warmup_steps,
|
524 |
+
max_steps=self.max_steps - self.warmup_steps,
|
525 |
+
min_lr=self.min_lr,
|
526 |
+
) for initial_lr in self.base_lrs
|
527 |
+
]
|
528 |
+
else:
|
529 |
+
new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
|
530 |
+
return new_lrs
|
531 |
+
|
532 |
+
def _get_warmup_lr(self, step):
|
533 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
534 |
+
return super()._get_warmup_lr(step)
|
535 |
+
else:
|
536 |
+
# Use linear warmup for the initial part.
|
537 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
538 |
+
|
539 |
+
def _get_constant_lr(self, step):
|
540 |
+
# Only called when `constant_steps` > 0.
|
541 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
542 |
+
|
543 |
+
def _get_linear_warmup_with_cosine_annealing_lr(self, step):
|
544 |
+
# Cosine Schedule for Megatron LM,
|
545 |
+
# slightly different warmup schedule + constant LR at the end.
|
546 |
+
new_lrs = [
|
547 |
+
_linear_warmup_with_cosine_annealing(
|
548 |
+
max_lr=self.base_lrs[0],
|
549 |
+
warmup_steps=self.warmup_steps,
|
550 |
+
step=step,
|
551 |
+
decay_steps=self.decay_steps,
|
552 |
+
min_lr=self.min_lr,
|
553 |
+
) for _ in self.base_lrs
|
554 |
+
]
|
555 |
+
return new_lrs
|
556 |
+
|
557 |
+
|
558 |
+
class NoamAnnealing(_LRScheduler):
|
559 |
+
|
560 |
+
def __init__(self,
|
561 |
+
optimizer,
|
562 |
+
*,
|
563 |
+
d_model,
|
564 |
+
warmup_steps=None,
|
565 |
+
warmup_ratio=None,
|
566 |
+
max_steps=None,
|
567 |
+
min_lr=0.0,
|
568 |
+
last_epoch=-1):
|
569 |
+
self._normalize = d_model**(-0.5)
|
570 |
+
assert not (warmup_steps is not None
|
571 |
+
and warmup_ratio is not None), \
|
572 |
+
"Either use particular number of step or ratio"
|
573 |
+
assert warmup_ratio is None or max_steps is not None, \
|
574 |
+
"If there is a ratio, there should be a total steps"
|
575 |
+
|
576 |
+
# It is necessary to assign all attributes *before* __init__,
|
577 |
+
# as class is wrapped by an inner class.
|
578 |
+
self.max_steps = max_steps
|
579 |
+
if warmup_steps is not None:
|
580 |
+
self.warmup_steps = warmup_steps
|
581 |
+
elif warmup_ratio is not None:
|
582 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
583 |
+
else:
|
584 |
+
self.warmup_steps = 0
|
585 |
+
|
586 |
+
self.min_lr = min_lr
|
587 |
+
super().__init__(optimizer, last_epoch)
|
588 |
+
|
589 |
+
def get_lr(self):
|
590 |
+
if not self._get_lr_called_within_step:
|
591 |
+
warnings.warn(
|
592 |
+
"To get the last learning rate computed "
|
593 |
+
"by the scheduler, please use `get_last_lr()`.",
|
594 |
+
UserWarning,
|
595 |
+
stacklevel=2)
|
596 |
+
|
597 |
+
step = max(1, self.last_epoch)
|
598 |
+
|
599 |
+
for initial_lr in self.base_lrs:
|
600 |
+
if initial_lr < self.min_lr:
|
601 |
+
raise ValueError(
|
602 |
+
f"{self} received an initial learning rate "
|
603 |
+
f"that was lower than the minimum learning rate.")
|
604 |
+
|
605 |
+
new_lrs = [
|
606 |
+
self._noam_annealing(initial_lr=initial_lr, step=step)
|
607 |
+
for initial_lr in self.base_lrs
|
608 |
+
]
|
609 |
+
return new_lrs
|
610 |
+
|
611 |
+
def _noam_annealing(self, initial_lr, step):
|
612 |
+
if self.warmup_steps > 0:
|
613 |
+
mult = self._normalize * min(step**(-0.5),
|
614 |
+
step * (self.warmup_steps**(-1.5)))
|
615 |
+
else:
|
616 |
+
mult = self._normalize * step**(-0.5)
|
617 |
+
|
618 |
+
out_lr = initial_lr * mult
|
619 |
+
if step > self.warmup_steps:
|
620 |
+
out_lr = max(out_lr, self.min_lr)
|
621 |
+
return out_lr
|
622 |
+
|
623 |
+
|
624 |
+
class NoamHoldAnnealing(WarmupHoldPolicy):
|
625 |
+
|
626 |
+
def __init__(self,
|
627 |
+
optimizer,
|
628 |
+
*,
|
629 |
+
max_steps,
|
630 |
+
decay_rate=0.5,
|
631 |
+
min_lr=0.0,
|
632 |
+
last_epoch=-1,
|
633 |
+
**kwargs):
|
634 |
+
"""
|
635 |
+
From Nemo:
|
636 |
+
Implementation of the Noam Hold Annealing policy
|
637 |
+
from the SqueezeFormer paper.
|
638 |
+
|
639 |
+
Unlike NoamAnnealing, the peak learning rate
|
640 |
+
can be explicitly set for this scheduler.
|
641 |
+
The schedule first performs linear warmup,
|
642 |
+
then holds the peak LR, then decays with some schedule for
|
643 |
+
the remainder of the steps.
|
644 |
+
Therefore the min-lr is still dependent
|
645 |
+
on the hyper parameters selected.
|
646 |
+
|
647 |
+
It's schedule is determined by three factors-
|
648 |
+
|
649 |
+
Warmup Steps: Initial stage, where linear warmup
|
650 |
+
occurs uptil the peak LR is reached. Unlike NoamAnnealing,
|
651 |
+
the peak LR is explicitly stated here instead of a scaling factor.
|
652 |
+
|
653 |
+
Hold Steps: Intermediate stage, where the peak LR
|
654 |
+
is maintained for some number of steps. In this region,
|
655 |
+
the high peak LR allows the model to converge faster
|
656 |
+
if training is stable. However the high LR
|
657 |
+
may also cause instability during training.
|
658 |
+
Should usually be a significant fraction of training
|
659 |
+
steps (around 30-40% of the entire training steps).
|
660 |
+
|
661 |
+
Decay Steps: Final stage, where the LR rapidly decays
|
662 |
+
with some scaling rate (set by decay rate).
|
663 |
+
To attain Noam decay, use 0.5,
|
664 |
+
for Squeezeformer recommended decay, use 1.0.
|
665 |
+
The fast decay after prolonged high LR during
|
666 |
+
hold phase allows for rapid convergence.
|
667 |
+
|
668 |
+
References:
|
669 |
+
- [Squeezeformer:
|
670 |
+
An Efficient Transformer for Automatic Speech Recognition]
|
671 |
+
(https://arxiv.org/abs/2206.00888)
|
672 |
+
|
673 |
+
Args:
|
674 |
+
optimizer: Pytorch compatible Optimizer object.
|
675 |
+
warmup_steps: Number of training steps in warmup stage
|
676 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
677 |
+
hold_steps: Number of training steps to
|
678 |
+
hold the learning rate after warm up
|
679 |
+
hold_ratio: Ratio of hold steps to total steps
|
680 |
+
max_steps: Total number of steps while training or `None` for
|
681 |
+
infinite training
|
682 |
+
decay_rate: Float value describing the polynomial decay
|
683 |
+
after the hold period. Default value
|
684 |
+
of 0.5 corresponds to Noam decay.
|
685 |
+
min_lr: Minimum learning rate.
|
686 |
+
"""
|
687 |
+
self.decay_rate = decay_rate
|
688 |
+
super().__init__(optimizer=optimizer,
|
689 |
+
max_steps=max_steps,
|
690 |
+
last_epoch=last_epoch,
|
691 |
+
min_lr=min_lr,
|
692 |
+
**kwargs)
|
693 |
+
|
694 |
+
def _get_lr(self, step):
|
695 |
+
if self.warmup_steps is None or self.warmup_steps == 0:
|
696 |
+
raise ValueError(
|
697 |
+
"Noam scheduler cannot be used without warmup steps")
|
698 |
+
|
699 |
+
if self.hold_steps > 0:
|
700 |
+
hold_steps = self.hold_steps - self.warmup_steps
|
701 |
+
else:
|
702 |
+
hold_steps = 0
|
703 |
+
|
704 |
+
new_lrs = [
|
705 |
+
_noam_hold_annealing(
|
706 |
+
initial_lr,
|
707 |
+
step=step,
|
708 |
+
warmup_steps=self.warmup_steps,
|
709 |
+
hold_steps=hold_steps,
|
710 |
+
decay_rate=self.decay_rate,
|
711 |
+
min_lr=self.min_lr,
|
712 |
+
) for initial_lr in self.base_lrs
|
713 |
+
]
|
714 |
+
return new_lrs
|
715 |
+
|
716 |
+
def set_step(self, step: int):
|
717 |
+
self.last_epoch = step
|
718 |
+
|
719 |
+
|
720 |
+
class ConstantLR(_LRScheduler):
|
721 |
+
"""The ConstantLR scheduler
|
722 |
+
|
723 |
+
This scheduler keeps a constant lr
|
724 |
+
|
725 |
+
"""
|
726 |
+
|
727 |
+
def __init__(
|
728 |
+
self,
|
729 |
+
optimizer: torch.optim.Optimizer,
|
730 |
+
):
|
731 |
+
# __init__() must be invoked before setting field
|
732 |
+
# because step() is also invoked in __init__()
|
733 |
+
super().__init__(optimizer)
|
734 |
+
|
735 |
+
def get_lr(self):
|
736 |
+
return self.base_lrs
|
737 |
+
|
738 |
+
def set_step(self, step: int):
|
739 |
+
self.last_epoch = step
|
cosyvoice/utils/train_utils.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2023 Horizon Inc. (authors: Xingchen Song)
|
3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from contextlib import nullcontext
|
18 |
+
import logging
|
19 |
+
import os
|
20 |
+
import torch
|
21 |
+
import json
|
22 |
+
import re
|
23 |
+
import datetime
|
24 |
+
import yaml
|
25 |
+
|
26 |
+
import deepspeed
|
27 |
+
import torch.optim as optim
|
28 |
+
import torch.distributed as dist
|
29 |
+
|
30 |
+
from torch.utils.tensorboard import SummaryWriter
|
31 |
+
from torch.utils.data import DataLoader
|
32 |
+
from torch.nn.utils import clip_grad_norm_
|
33 |
+
|
34 |
+
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
|
35 |
+
|
36 |
+
from cosyvoice.dataset.dataset import Dataset
|
37 |
+
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
|
38 |
+
|
39 |
+
|
40 |
+
def init_distributed(args):
|
41 |
+
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
42 |
+
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
43 |
+
rank = int(os.environ.get('RANK', 0))
|
44 |
+
logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
|
45 |
+
', rank {}, world_size {}'.format(rank, world_size))
|
46 |
+
if args.train_engine == 'torch_ddp':
|
47 |
+
torch.cuda.set_device(local_rank)
|
48 |
+
dist.init_process_group(args.dist_backend)
|
49 |
+
else:
|
50 |
+
deepspeed.init_distributed(dist_backend=args.dist_backend)
|
51 |
+
return world_size, local_rank, rank
|
52 |
+
|
53 |
+
|
54 |
+
def init_dataset_and_dataloader(args, configs):
|
55 |
+
train_dataset = Dataset(args.train_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=True, partition=True)
|
56 |
+
cv_dataset = Dataset(args.cv_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=False, partition=False)
|
57 |
+
|
58 |
+
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
59 |
+
train_data_loader = DataLoader(train_dataset,
|
60 |
+
batch_size=None,
|
61 |
+
pin_memory=args.pin_memory,
|
62 |
+
num_workers=args.num_workers,
|
63 |
+
prefetch_factor=args.prefetch)
|
64 |
+
cv_data_loader = DataLoader(cv_dataset,
|
65 |
+
batch_size=None,
|
66 |
+
pin_memory=args.pin_memory,
|
67 |
+
num_workers=args.num_workers,
|
68 |
+
prefetch_factor=args.prefetch)
|
69 |
+
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def check_modify_and_save_config(args, configs):
|
74 |
+
if args.train_engine == "torch_ddp":
|
75 |
+
configs['train_conf']["dtype"] = 'fp32'
|
76 |
+
else:
|
77 |
+
with open(args.deepspeed_config, 'r') as fin:
|
78 |
+
ds_configs = json.load(fin)
|
79 |
+
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
|
80 |
+
configs['train_conf']["dtype"] = "fp16"
|
81 |
+
elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
|
82 |
+
configs['train_conf']["dtype"] = "bf16"
|
83 |
+
else:
|
84 |
+
configs['train_conf']["dtype"] = "fp32"
|
85 |
+
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
|
86 |
+
# if use deepspeed, override ddp config
|
87 |
+
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] * configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
88 |
+
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
|
89 |
+
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
|
90 |
+
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
|
91 |
+
return configs
|
92 |
+
|
93 |
+
|
94 |
+
def wrap_cuda_model(args, model):
|
95 |
+
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
|
96 |
+
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
97 |
+
if args.train_engine == "torch_ddp": # native pytorch ddp
|
98 |
+
assert (torch.cuda.is_available())
|
99 |
+
model.cuda()
|
100 |
+
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
|
101 |
+
else:
|
102 |
+
if int(os.environ.get('RANK', 0)) == 0:
|
103 |
+
logging.info("Estimating model states memory needs (zero2)...")
|
104 |
+
estimate_zero2_model_states_mem_needs_all_live(
|
105 |
+
model,
|
106 |
+
num_gpus_per_node=local_world_size,
|
107 |
+
num_nodes=world_size // local_world_size)
|
108 |
+
return model
|
109 |
+
|
110 |
+
|
111 |
+
def init_optimizer_and_scheduler(args, configs, model):
|
112 |
+
if configs['train_conf']['optim'] == 'adam':
|
113 |
+
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
114 |
+
elif configs['train_conf']['optim'] == 'adamw':
|
115 |
+
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
116 |
+
else:
|
117 |
+
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
118 |
+
|
119 |
+
if configs['train_conf']['scheduler'] == 'warmuplr':
|
120 |
+
scheduler_type = WarmupLR
|
121 |
+
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
122 |
+
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
123 |
+
scheduler_type = NoamHoldAnnealing
|
124 |
+
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
125 |
+
elif configs['train_conf']['scheduler'] == 'constantlr':
|
126 |
+
scheduler_type = ConstantLR
|
127 |
+
scheduler = ConstantLR(optimizer)
|
128 |
+
else:
|
129 |
+
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
130 |
+
|
131 |
+
# use deepspeed optimizer for speedup
|
132 |
+
if args.train_engine == "deepspeed":
|
133 |
+
def scheduler(opt):
|
134 |
+
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
135 |
+
model, optimizer, _, scheduler = deepspeed.initialize(
|
136 |
+
args=args,
|
137 |
+
model=model,
|
138 |
+
optimizer=None,
|
139 |
+
lr_scheduler=scheduler,
|
140 |
+
model_parameters=model.parameters())
|
141 |
+
|
142 |
+
return model, optimizer, scheduler
|
143 |
+
|
144 |
+
|
145 |
+
def init_summarywriter(args):
|
146 |
+
writer = None
|
147 |
+
if int(os.environ.get('RANK', 0)) == 0:
|
148 |
+
os.makedirs(args.model_dir, exist_ok=True)
|
149 |
+
writer = SummaryWriter(args.tensorboard_dir)
|
150 |
+
return writer
|
151 |
+
|
152 |
+
|
153 |
+
def save_model(model, model_name, info_dict):
|
154 |
+
rank = int(os.environ.get('RANK', 0))
|
155 |
+
model_dir = info_dict["model_dir"]
|
156 |
+
save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
|
157 |
+
|
158 |
+
if info_dict["train_engine"] == "torch_ddp":
|
159 |
+
if rank == 0:
|
160 |
+
torch.save(model.module.state_dict(), save_model_path)
|
161 |
+
else:
|
162 |
+
with torch.no_grad():
|
163 |
+
model.save_checkpoint(save_dir=model_dir,
|
164 |
+
tag=model_name,
|
165 |
+
client_state=info_dict)
|
166 |
+
if rank == 0:
|
167 |
+
info_path = re.sub('.pt$', '.yaml', save_model_path)
|
168 |
+
info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
|
169 |
+
with open(info_path, 'w') as fout:
|
170 |
+
data = yaml.dump(info_dict)
|
171 |
+
fout.write(data)
|
172 |
+
logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
|
173 |
+
|
174 |
+
|
175 |
+
def cosyvoice_join(group_join, info_dict):
|
176 |
+
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
177 |
+
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
178 |
+
rank = int(os.environ.get('RANK', 0))
|
179 |
+
|
180 |
+
if info_dict["batch_idx"] != 0:
|
181 |
+
# we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
|
182 |
+
try:
|
183 |
+
dist.monitored_barrier(group=group_join,
|
184 |
+
timeout=group_join.options._timeout)
|
185 |
+
return False
|
186 |
+
except RuntimeError as e:
|
187 |
+
logging.info("Detected uneven workload distribution: {}\n".format(e) +
|
188 |
+
"Break current worker to manually join all workers, " +
|
189 |
+
"world_size {}, current rank {}, current local_rank {}\n".
|
190 |
+
format(world_size, rank, local_rank))
|
191 |
+
return True
|
192 |
+
else:
|
193 |
+
return False
|
194 |
+
|
195 |
+
|
196 |
+
def batch_forward(model, batch, info_dict):
|
197 |
+
device = int(os.environ.get('LOCAL_RANK', 0))
|
198 |
+
|
199 |
+
dtype = info_dict["dtype"]
|
200 |
+
if dtype == "fp16":
|
201 |
+
dtype = torch.float16
|
202 |
+
elif dtype == "bf16":
|
203 |
+
dtype = torch.bfloat16
|
204 |
+
else: # fp32
|
205 |
+
dtype = torch.float32
|
206 |
+
|
207 |
+
if info_dict['train_engine'] == 'torch_ddp':
|
208 |
+
autocast = nullcontext()
|
209 |
+
else:
|
210 |
+
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
|
211 |
+
|
212 |
+
with autocast:
|
213 |
+
info_dict['loss_dict'] = model(batch, device)
|
214 |
+
return info_dict
|
215 |
+
|
216 |
+
|
217 |
+
def batch_backward(model, info_dict):
|
218 |
+
if info_dict["train_engine"] == "deepspeed":
|
219 |
+
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
|
220 |
+
else:
|
221 |
+
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
|
222 |
+
scaled_loss.backward()
|
223 |
+
|
224 |
+
info_dict['loss_dict']['loss'] = scaled_loss
|
225 |
+
return info_dict
|
226 |
+
|
227 |
+
|
228 |
+
def update_parameter_and_lr(model, optimizer, scheduler, info_dict):
|
229 |
+
grad_norm = 0.0
|
230 |
+
if info_dict['train_engine'] == "deepspeed":
|
231 |
+
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
|
232 |
+
model.step()
|
233 |
+
grad_norm = model.get_global_grad_norm()
|
234 |
+
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
|
235 |
+
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
236 |
+
if torch.isfinite(grad_norm):
|
237 |
+
optimizer.step()
|
238 |
+
optimizer.zero_grad()
|
239 |
+
scheduler.step()
|
240 |
+
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
241 |
+
info_dict["grad_norm"] = grad_norm
|
242 |
+
return info_dict
|
243 |
+
|
244 |
+
|
245 |
+
def log_per_step(writer, info_dict):
|
246 |
+
tag = info_dict["tag"]
|
247 |
+
epoch = info_dict.get('epoch', 0)
|
248 |
+
step = info_dict["step"]
|
249 |
+
batch_idx = info_dict["batch_idx"]
|
250 |
+
loss_dict = info_dict['loss_dict']
|
251 |
+
rank = int(os.environ.get('RANK', 0))
|
252 |
+
|
253 |
+
# only rank 0 write to tensorboard to avoid multi-process write
|
254 |
+
if writer is not None:
|
255 |
+
if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
|
256 |
+
(info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
|
257 |
+
for k in ['epoch', 'lr', 'grad_norm']:
|
258 |
+
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
259 |
+
for k, v in loss_dict.items():
|
260 |
+
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
261 |
+
|
262 |
+
# TRAIN & CV, Shell log (stdout)
|
263 |
+
if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
|
264 |
+
log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
|
265 |
+
for name, value in loss_dict.items():
|
266 |
+
log_str += '{} {:.6f} '.format(name, value)
|
267 |
+
if tag == "TRAIN":
|
268 |
+
log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
|
269 |
+
info_dict["lr"], info_dict['grad_norm'])
|
270 |
+
log_str += ' rank {}'.format(rank)
|
271 |
+
logging.debug(log_str)
|
272 |
+
|
273 |
+
|
274 |
+
def log_per_save(writer, info_dict):
|
275 |
+
tag = info_dict["tag"]
|
276 |
+
epoch = info_dict["epoch"]
|
277 |
+
step = info_dict["step"]
|
278 |
+
loss_dict = info_dict["loss_dict"]
|
279 |
+
lr = info_dict['lr']
|
280 |
+
rank = int(os.environ.get('RANK', 0))
|
281 |
+
logging.info(
|
282 |
+
'Epoch {} Step {} CV info lr {} {} rank {}'.format(
|
283 |
+
epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
|
284 |
+
|
285 |
+
if writer is not None:
|
286 |
+
for k in ['epoch', 'lr']:
|
287 |
+
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
288 |
+
for k, v in loss_dict.items():
|
289 |
+
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
examples/libritts/cosyvoice/conf/cosyvoice.fromscratch.yaml
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set random seed, so that you may reproduce your result.
|
2 |
+
__set_seed1: !apply:random.seed [1986]
|
3 |
+
__set_seed2: !apply:numpy.random.seed [1986]
|
4 |
+
__set_seed3: !apply:torch.manual_seed [1986]
|
5 |
+
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
6 |
+
|
7 |
+
# fixed params
|
8 |
+
sample_rate: 22050
|
9 |
+
text_encoder_input_size: 512
|
10 |
+
llm_input_size: 1024
|
11 |
+
llm_output_size: 1024
|
12 |
+
spk_embed_dim: 192
|
13 |
+
|
14 |
+
# model params
|
15 |
+
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
16 |
+
# for system/third_party class/function, we do not require this.
|
17 |
+
llm: !new:cosyvoice.llm.llm.TransformerLM
|
18 |
+
text_encoder_input_size: !ref <text_encoder_input_size>
|
19 |
+
llm_input_size: !ref <llm_input_size>
|
20 |
+
llm_output_size: !ref <llm_output_size>
|
21 |
+
text_token_size: 51866
|
22 |
+
speech_token_size: 4096
|
23 |
+
length_normalized_loss: True
|
24 |
+
lsm_weight: 0
|
25 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
26 |
+
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
27 |
+
input_size: !ref <text_encoder_input_size>
|
28 |
+
output_size: 1024
|
29 |
+
attention_heads: 8
|
30 |
+
linear_units: 2048
|
31 |
+
num_blocks: 3
|
32 |
+
dropout_rate: 0.1
|
33 |
+
positional_dropout_rate: 0.1
|
34 |
+
attention_dropout_rate: 0
|
35 |
+
normalize_before: True
|
36 |
+
input_layer: 'linear'
|
37 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
38 |
+
selfattention_layer_type: 'rel_selfattn'
|
39 |
+
use_cnn_module: False
|
40 |
+
macaron_style: False
|
41 |
+
use_dynamic_chunk: False
|
42 |
+
use_dynamic_left_chunk: False
|
43 |
+
static_chunk_size: 1
|
44 |
+
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
45 |
+
input_size: !ref <llm_input_size>
|
46 |
+
output_size: !ref <llm_output_size>
|
47 |
+
attention_heads: 8
|
48 |
+
linear_units: 2048
|
49 |
+
num_blocks: 7
|
50 |
+
dropout_rate: 0.1
|
51 |
+
positional_dropout_rate: 0.1
|
52 |
+
attention_dropout_rate: 0
|
53 |
+
input_layer: 'linear_legacy'
|
54 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
55 |
+
selfattention_layer_type: 'rel_selfattn'
|
56 |
+
static_chunk_size: 1
|
57 |
+
|
58 |
+
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
59 |
+
input_size: 512
|
60 |
+
output_size: 80
|
61 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
62 |
+
output_type: 'mel'
|
63 |
+
vocab_size: 4096
|
64 |
+
input_frame_rate: 50
|
65 |
+
only_mask_loss: True
|
66 |
+
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
67 |
+
output_size: 512
|
68 |
+
attention_heads: 8
|
69 |
+
linear_units: 2048
|
70 |
+
num_blocks: 6
|
71 |
+
dropout_rate: 0.1
|
72 |
+
positional_dropout_rate: 0.1
|
73 |
+
attention_dropout_rate: 0.1
|
74 |
+
normalize_before: True
|
75 |
+
input_layer: 'linear'
|
76 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
77 |
+
selfattention_layer_type: 'rel_selfattn'
|
78 |
+
input_size: 512
|
79 |
+
use_cnn_module: False
|
80 |
+
macaron_style: False
|
81 |
+
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
82 |
+
channels: 80
|
83 |
+
sampling_ratios: [1, 1, 1, 1]
|
84 |
+
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
85 |
+
in_channels: 240
|
86 |
+
n_spks: 1
|
87 |
+
spk_emb_dim: 80
|
88 |
+
cfm_params: !new:omegaconf.DictConfig
|
89 |
+
content:
|
90 |
+
sigma_min: 1e-06
|
91 |
+
solver: 'euler'
|
92 |
+
t_scheduler: 'cosine'
|
93 |
+
training_cfg_rate: 0.2
|
94 |
+
inference_cfg_rate: 0.7
|
95 |
+
reg_loss_type: 'l1'
|
96 |
+
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
97 |
+
in_channels: 320
|
98 |
+
out_channels: 80
|
99 |
+
channels: [256, 256]
|
100 |
+
dropout: 0
|
101 |
+
attention_head_dim: 64
|
102 |
+
n_blocks: 4
|
103 |
+
num_mid_blocks: 12
|
104 |
+
num_heads: 8
|
105 |
+
act_fn: 'gelu'
|
106 |
+
|
107 |
+
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
108 |
+
in_channels: 80
|
109 |
+
base_channels: 512
|
110 |
+
nb_harmonics: 8
|
111 |
+
sampling_rate: !ref <sample_rate>
|
112 |
+
nsf_alpha: 0.1
|
113 |
+
nsf_sigma: 0.003
|
114 |
+
nsf_voiced_threshold: 10
|
115 |
+
upsample_rates: [8, 8]
|
116 |
+
upsample_kernel_sizes: [16, 16]
|
117 |
+
istft_params:
|
118 |
+
n_fft: 16
|
119 |
+
hop_len: 4
|
120 |
+
resblock_kernel_sizes: [3, 7, 11]
|
121 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
122 |
+
source_resblock_kernel_sizes: [7, 11]
|
123 |
+
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
124 |
+
lrelu_slope: 0.1
|
125 |
+
audio_limit: 0.99
|
126 |
+
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
127 |
+
num_class: 1
|
128 |
+
in_channels: 80
|
129 |
+
cond_channels: 512
|
130 |
+
|
131 |
+
# processor functions
|
132 |
+
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
133 |
+
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
134 |
+
multilingual: True
|
135 |
+
num_languages: 100
|
136 |
+
language: 'en'
|
137 |
+
task: 'transcribe'
|
138 |
+
allowed_special: 'all'
|
139 |
+
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
140 |
+
get_tokenizer: !ref <get_tokenizer>
|
141 |
+
allowed_special: !ref <allowed_special>
|
142 |
+
filter: !name:cosyvoice.dataset.processor.filter
|
143 |
+
max_length: 40960
|
144 |
+
min_length: 0
|
145 |
+
token_max_length: 200
|
146 |
+
token_min_length: 1
|
147 |
+
resample: !name:cosyvoice.dataset.processor.resample
|
148 |
+
resample_rate: !ref <sample_rate>
|
149 |
+
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
150 |
+
n_fft: 1024
|
151 |
+
num_mels: 80
|
152 |
+
sampling_rate: !ref <sample_rate>
|
153 |
+
hop_size: 256
|
154 |
+
win_size: 1024
|
155 |
+
fmin: 0
|
156 |
+
fmax: 8000
|
157 |
+
center: False
|
158 |
+
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
159 |
+
feat_extractor: !ref <feat_extractor>
|
160 |
+
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
161 |
+
normalize: True
|
162 |
+
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
163 |
+
shuffle_size: 1000
|
164 |
+
sort: !name:cosyvoice.dataset.processor.sort
|
165 |
+
sort_size: 500 # sort_size should be less than shuffle_size
|
166 |
+
batch: !name:cosyvoice.dataset.processor.batch
|
167 |
+
batch_type: 'dynamic'
|
168 |
+
max_frames_in_batch: 12000
|
169 |
+
padding: !name:cosyvoice.dataset.processor.padding
|
170 |
+
use_spk_embedding: False # change to True during sft
|
171 |
+
|
172 |
+
# dataset processor pipeline
|
173 |
+
data_pipeline: [
|
174 |
+
!ref <parquet_opener>,
|
175 |
+
!ref <tokenize>,
|
176 |
+
!ref <filter>,
|
177 |
+
!ref <resample>,
|
178 |
+
!ref <compute_fbank>,
|
179 |
+
!ref <parse_embedding>,
|
180 |
+
!ref <shuffle>,
|
181 |
+
!ref <sort>,
|
182 |
+
!ref <batch>,
|
183 |
+
!ref <padding>,
|
184 |
+
]
|
185 |
+
|
186 |
+
# train conf
|
187 |
+
train_conf:
|
188 |
+
optim: adam
|
189 |
+
optim_conf:
|
190 |
+
lr: 0.002 # change to 0.001 if you want to train flow from scratch
|
191 |
+
scheduler: warmuplr
|
192 |
+
scheduler_conf:
|
193 |
+
warmup_steps: 25000
|
194 |
+
max_epoch: 200
|
195 |
+
grad_clip: 5
|
196 |
+
accum_grad: 2
|
197 |
+
log_interval: 100
|
198 |
+
save_per_step: -1
|
examples/libritts/cosyvoice/conf/cosyvoice.yaml
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set random seed, so that you may reproduce your result.
|
2 |
+
__set_seed1: !apply:random.seed [1986]
|
3 |
+
__set_seed2: !apply:numpy.random.seed [1986]
|
4 |
+
__set_seed3: !apply:torch.manual_seed [1986]
|
5 |
+
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
6 |
+
|
7 |
+
# fixed params
|
8 |
+
sample_rate: 22050
|
9 |
+
text_encoder_input_size: 512
|
10 |
+
llm_input_size: 1024
|
11 |
+
llm_output_size: 1024
|
12 |
+
spk_embed_dim: 192
|
13 |
+
|
14 |
+
# model params
|
15 |
+
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
16 |
+
# for system/third_party class/function, we do not require this.
|
17 |
+
llm: !new:cosyvoice.llm.llm.TransformerLM
|
18 |
+
text_encoder_input_size: !ref <text_encoder_input_size>
|
19 |
+
llm_input_size: !ref <llm_input_size>
|
20 |
+
llm_output_size: !ref <llm_output_size>
|
21 |
+
text_token_size: 51866
|
22 |
+
speech_token_size: 4096
|
23 |
+
length_normalized_loss: True
|
24 |
+
lsm_weight: 0
|
25 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
26 |
+
text_encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
27 |
+
input_size: !ref <text_encoder_input_size>
|
28 |
+
output_size: 1024
|
29 |
+
attention_heads: 16
|
30 |
+
linear_units: 4096
|
31 |
+
num_blocks: 6
|
32 |
+
dropout_rate: 0.1
|
33 |
+
positional_dropout_rate: 0.1
|
34 |
+
attention_dropout_rate: 0
|
35 |
+
normalize_before: True
|
36 |
+
input_layer: 'linear'
|
37 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
38 |
+
selfattention_layer_type: 'rel_selfattn'
|
39 |
+
use_cnn_module: False
|
40 |
+
macaron_style: False
|
41 |
+
use_dynamic_chunk: False
|
42 |
+
use_dynamic_left_chunk: False
|
43 |
+
static_chunk_size: 1
|
44 |
+
llm: !new:cosyvoice.transformer.encoder.TransformerEncoder
|
45 |
+
input_size: !ref <llm_input_size>
|
46 |
+
output_size: !ref <llm_output_size>
|
47 |
+
attention_heads: 16
|
48 |
+
linear_units: 4096
|
49 |
+
num_blocks: 14
|
50 |
+
dropout_rate: 0.1
|
51 |
+
positional_dropout_rate: 0.1
|
52 |
+
attention_dropout_rate: 0
|
53 |
+
input_layer: 'linear_legacy'
|
54 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
55 |
+
selfattention_layer_type: 'rel_selfattn'
|
56 |
+
static_chunk_size: 1
|
57 |
+
|
58 |
+
flow: !new:cosyvoice.flow.flow.MaskedDiffWithXvec
|
59 |
+
input_size: 512
|
60 |
+
output_size: 80
|
61 |
+
spk_embed_dim: !ref <spk_embed_dim>
|
62 |
+
output_type: 'mel'
|
63 |
+
vocab_size: 4096
|
64 |
+
input_frame_rate: 50
|
65 |
+
only_mask_loss: True
|
66 |
+
encoder: !new:cosyvoice.transformer.encoder.ConformerEncoder
|
67 |
+
output_size: 512
|
68 |
+
attention_heads: 8
|
69 |
+
linear_units: 2048
|
70 |
+
num_blocks: 6
|
71 |
+
dropout_rate: 0.1
|
72 |
+
positional_dropout_rate: 0.1
|
73 |
+
attention_dropout_rate: 0.1
|
74 |
+
normalize_before: True
|
75 |
+
input_layer: 'linear'
|
76 |
+
pos_enc_layer_type: 'rel_pos_espnet'
|
77 |
+
selfattention_layer_type: 'rel_selfattn'
|
78 |
+
input_size: 512
|
79 |
+
use_cnn_module: False
|
80 |
+
macaron_style: False
|
81 |
+
length_regulator: !new:cosyvoice.flow.length_regulator.InterpolateRegulator
|
82 |
+
channels: 80
|
83 |
+
sampling_ratios: [1, 1, 1, 1]
|
84 |
+
decoder: !new:cosyvoice.flow.flow_matching.ConditionalCFM
|
85 |
+
in_channels: 240
|
86 |
+
n_spks: 1
|
87 |
+
spk_emb_dim: 80
|
88 |
+
cfm_params: !new:omegaconf.DictConfig
|
89 |
+
content:
|
90 |
+
sigma_min: 1e-06
|
91 |
+
solver: 'euler'
|
92 |
+
t_scheduler: 'cosine'
|
93 |
+
training_cfg_rate: 0.2
|
94 |
+
inference_cfg_rate: 0.7
|
95 |
+
reg_loss_type: 'l1'
|
96 |
+
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
97 |
+
in_channels: 320
|
98 |
+
out_channels: 80
|
99 |
+
channels: [256, 256]
|
100 |
+
dropout: 0
|
101 |
+
attention_head_dim: 64
|
102 |
+
n_blocks: 4
|
103 |
+
num_mid_blocks: 12
|
104 |
+
num_heads: 8
|
105 |
+
act_fn: 'gelu'
|
106 |
+
|
107 |
+
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
108 |
+
in_channels: 80
|
109 |
+
base_channels: 512
|
110 |
+
nb_harmonics: 8
|
111 |
+
sampling_rate: !ref <sample_rate>
|
112 |
+
nsf_alpha: 0.1
|
113 |
+
nsf_sigma: 0.003
|
114 |
+
nsf_voiced_threshold: 10
|
115 |
+
upsample_rates: [8, 8]
|
116 |
+
upsample_kernel_sizes: [16, 16]
|
117 |
+
istft_params:
|
118 |
+
n_fft: 16
|
119 |
+
hop_len: 4
|
120 |
+
resblock_kernel_sizes: [3, 7, 11]
|
121 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
122 |
+
source_resblock_kernel_sizes: [7, 11]
|
123 |
+
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5]]
|
124 |
+
lrelu_slope: 0.1
|
125 |
+
audio_limit: 0.99
|
126 |
+
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
127 |
+
num_class: 1
|
128 |
+
in_channels: 80
|
129 |
+
cond_channels: 512
|
130 |
+
|
131 |
+
# processor functions
|
132 |
+
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
133 |
+
get_tokenizer: !name:whisper.tokenizer.get_tokenizer
|
134 |
+
multilingual: True
|
135 |
+
num_languages: 100
|
136 |
+
language: 'en'
|
137 |
+
task: 'transcribe'
|
138 |
+
allowed_special: 'all'
|
139 |
+
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
140 |
+
get_tokenizer: !ref <get_tokenizer>
|
141 |
+
allowed_special: !ref <allowed_special>
|
142 |
+
filter: !name:cosyvoice.dataset.processor.filter
|
143 |
+
max_length: 40960
|
144 |
+
min_length: 0
|
145 |
+
token_max_length: 200
|
146 |
+
token_min_length: 1
|
147 |
+
resample: !name:cosyvoice.dataset.processor.resample
|
148 |
+
resample_rate: !ref <sample_rate>
|
149 |
+
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
150 |
+
n_fft: 1024
|
151 |
+
num_mels: 80
|
152 |
+
sampling_rate: !ref <sample_rate>
|
153 |
+
hop_size: 256
|
154 |
+
win_size: 1024
|
155 |
+
fmin: 0
|
156 |
+
fmax: 8000
|
157 |
+
center: False
|
158 |
+
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
159 |
+
feat_extractor: !ref <feat_extractor>
|
160 |
+
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
161 |
+
normalize: True
|
162 |
+
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
163 |
+
shuffle_size: 1000
|
164 |
+
sort: !name:cosyvoice.dataset.processor.sort
|
165 |
+
sort_size: 500 # sort_size should be less than shuffle_size
|
166 |
+
batch: !name:cosyvoice.dataset.processor.batch
|
167 |
+
batch_type: 'dynamic'
|
168 |
+
max_frames_in_batch: 2000
|
169 |
+
padding: !name:cosyvoice.dataset.processor.padding
|
170 |
+
use_spk_embedding: False # change to True during sft
|
171 |
+
|
172 |
+
# dataset processor pipeline
|
173 |
+
data_pipeline: [
|
174 |
+
!ref <parquet_opener>,
|
175 |
+
!ref <tokenize>,
|
176 |
+
!ref <filter>,
|
177 |
+
!ref <resample>,
|
178 |
+
!ref <compute_fbank>,
|
179 |
+
!ref <parse_embedding>,
|
180 |
+
!ref <shuffle>,
|
181 |
+
!ref <sort>,
|
182 |
+
!ref <batch>,
|
183 |
+
!ref <padding>,
|
184 |
+
]
|
185 |
+
|
186 |
+
# train conf
|
187 |
+
train_conf:
|
188 |
+
optim: adam
|
189 |
+
optim_conf:
|
190 |
+
lr: 0.001 # change to 1e-5 during sft
|
191 |
+
scheduler: warmuplr # change to constantlr during sft
|
192 |
+
scheduler_conf:
|
193 |
+
warmup_steps: 2500
|
194 |
+
max_epoch: 200
|
195 |
+
grad_clip: 5
|
196 |
+
accum_grad: 2
|
197 |
+
log_interval: 100
|
198 |
+
save_per_step: -1
|
examples/libritts/cosyvoice/conf/ds_stage2.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train_micro_batch_size_per_gpu": 1,
|
3 |
+
"gradient_accumulation_steps": 1,
|
4 |
+
"steps_per_print": 100,
|
5 |
+
"gradient_clipping": 5,
|
6 |
+
"fp16": {
|
7 |
+
"enabled": false,
|
8 |
+
"auto_cast": false,
|
9 |
+
"loss_scale": 0,
|
10 |
+
"initial_scale_power": 16,
|
11 |
+
"loss_scale_window": 256,
|
12 |
+
"hysteresis": 2,
|
13 |
+
"consecutive_hysteresis": false,
|
14 |
+
"min_loss_scale": 1
|
15 |
+
},
|
16 |
+
"bf16": {
|
17 |
+
"enabled": false
|
18 |
+
},
|
19 |
+
"zero_force_ds_cpu_optimizer": false,
|
20 |
+
"zero_optimization": {
|
21 |
+
"stage": 2,
|
22 |
+
"offload_optimizer": {
|
23 |
+
"device": "none",
|
24 |
+
"pin_memory": true
|
25 |
+
},
|
26 |
+
"allgather_partitions": true,
|
27 |
+
"allgather_bucket_size": 5e8,
|
28 |
+
"overlap_comm": false,
|
29 |
+
"reduce_scatter": true,
|
30 |
+
"reduce_bucket_size": 5e8,
|
31 |
+
"contiguous_gradients" : true
|
32 |
+
},
|
33 |
+
"optimizer": {
|
34 |
+
"type": "AdamW",
|
35 |
+
"params": {
|
36 |
+
"lr": 0.001,
|
37 |
+
"weight_decay": 0.0001,
|
38 |
+
"torch_adam": true,
|
39 |
+
"adam_w_mode": true
|
40 |
+
}
|
41 |
+
}
|
42 |
+
}
|