Spaces:
Runtime error
Runtime error
kevinwang676
commited on
Commit
·
3e9f9d7
1
Parent(s):
580d62a
Upload 2 files
Browse files- cloning/__init__.py +0 -0
- cloning/clonevoice.py +68 -0
cloning/__init__.py
ADDED
File without changes
|
cloning/clonevoice.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bark.generation import load_codec_model, generate_text_semantic, grab_best_device
|
2 |
+
from encodec.utils import convert_audio
|
3 |
+
from bark.hubert.hubert_manager import HuBERTManager
|
4 |
+
from bark.hubert.pre_kmeans_hubert import CustomHubert
|
5 |
+
from bark.hubert.customtokenizer import CustomTokenizer
|
6 |
+
|
7 |
+
import torchaudio
|
8 |
+
import torch
|
9 |
+
import os
|
10 |
+
import gradio
|
11 |
+
|
12 |
+
|
13 |
+
def clone_voice(audio_filepath, dest_filename, progress=gradio.Progress(track_tqdm=True)):
|
14 |
+
# if len(text) < 1:
|
15 |
+
# raise gradio.Error('No transcription text entered!')
|
16 |
+
|
17 |
+
use_gpu = not os.environ.get("BARK_FORCE_CPU", False)
|
18 |
+
progress(0, desc="Loading Codec")
|
19 |
+
model = load_codec_model(use_gpu=use_gpu)
|
20 |
+
|
21 |
+
# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer
|
22 |
+
hubert_manager = HuBERTManager()
|
23 |
+
hubert_manager.make_sure_hubert_installed()
|
24 |
+
hubert_manager.make_sure_tokenizer_installed()
|
25 |
+
|
26 |
+
# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer
|
27 |
+
# Load HuBERT for semantic tokens
|
28 |
+
|
29 |
+
# Load the HuBERT model
|
30 |
+
device = grab_best_device(use_gpu)
|
31 |
+
hubert_model = CustomHubert(checkpoint_path='./models/hubert/hubert.pt').to(device)
|
32 |
+
|
33 |
+
# Load the CustomTokenizer model
|
34 |
+
tokenizer = CustomTokenizer.load_from_checkpoint('./models/hubert/tokenizer.pth').to(device) # Automatically uses the right layers
|
35 |
+
|
36 |
+
progress(0.25, desc="Converting WAV")
|
37 |
+
|
38 |
+
# Load and pre-process the audio waveform
|
39 |
+
wav, sr = torchaudio.load(audio_filepath)
|
40 |
+
if wav.shape[0] == 2: # Stereo to mono if needed
|
41 |
+
wav = wav.mean(0, keepdim=True)
|
42 |
+
|
43 |
+
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
44 |
+
wav = wav.to(device)
|
45 |
+
progress(0.5, desc="Extracting codes")
|
46 |
+
|
47 |
+
semantic_vectors = hubert_model.forward(wav, input_sample_hz=model.sample_rate)
|
48 |
+
semantic_tokens = tokenizer.get_token(semantic_vectors)
|
49 |
+
|
50 |
+
# Extract discrete codes from EnCodec
|
51 |
+
with torch.no_grad():
|
52 |
+
encoded_frames = model.encode(wav.unsqueeze(0))
|
53 |
+
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() # [n_q, T]
|
54 |
+
|
55 |
+
# get seconds of audio
|
56 |
+
# seconds = wav.shape[-1] / model.sample_rate
|
57 |
+
# generate semantic tokens
|
58 |
+
# semantic_tokens = generate_text_semantic(text, max_gen_duration_s=seconds, top_k=50, top_p=.95, temp=0.7)
|
59 |
+
|
60 |
+
# move codes to cpu
|
61 |
+
codes = codes.cpu().numpy()
|
62 |
+
# move semantic tokens to cpu
|
63 |
+
semantic_tokens = semantic_tokens.cpu().numpy()
|
64 |
+
|
65 |
+
import numpy as np
|
66 |
+
output_path = dest_filename + '.npz'
|
67 |
+
np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens)
|
68 |
+
return "Finished"
|