Spaces:
Runtime error
Runtime error
keremberke
commited on
Commit
·
10f3130
1
Parent(s):
307beef
Upload 2 files
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import gradio as gr
|
|
4 |
from datasets import load_dataset
|
5 |
from ultralyticsplus import YOLO, render_result, postprocess_classify_output
|
6 |
|
7 |
-
from utils import load_models_from_txt_files
|
8 |
|
9 |
EXAMPLE_IMAGE_DIR = 'example_images'
|
10 |
|
@@ -17,6 +17,7 @@ DEFAULT_CLS_DATASET_ID = 'keremberke/chest-xray-classification'
|
|
17 |
|
18 |
# load model ids and default models
|
19 |
det_model_ids, seg_model_ids, cls_model_ids = load_models_from_txt_files()
|
|
|
20 |
det_model = YOLO(DEFAULT_DET_MODEL_ID)
|
21 |
det_model_id = DEFAULT_DET_MODEL_ID
|
22 |
seg_model = YOLO(DEFAULT_SEG_MODEL_ID)
|
@@ -25,22 +26,25 @@ cls_model = YOLO(DEFAULT_CLS_MODEL_ID)
|
|
25 |
cls_model_id = DEFAULT_CLS_MODEL_ID
|
26 |
|
27 |
|
28 |
-
def get_examples(
|
29 |
examples = []
|
30 |
-
ds = load_dataset(dataset_id, name="mini")["validation"]
|
31 |
Path(EXAMPLE_IMAGE_DIR).mkdir(parents=True, exist_ok=True)
|
32 |
-
for
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
return examples
|
39 |
|
|
|
40 |
# load default examples using default datasets
|
41 |
-
det_examples = get_examples(
|
42 |
-
seg_examples = get_examples(
|
43 |
-
cls_examples = get_examples(
|
44 |
|
45 |
|
46 |
def predict(image, model_id, threshold):
|
@@ -120,12 +124,12 @@ with gr.Blocks() as demo:
|
|
120 |
with gr.Column():
|
121 |
detect_output = gr.Image(label="Predictions:", interactive=False)
|
122 |
with gr.Row():
|
123 |
-
gr.Examples(
|
124 |
det_examples,
|
125 |
inputs=[detect_input, detect_model_id, detect_threshold],
|
126 |
outputs=detect_output,
|
127 |
fn=predict,
|
128 |
-
cache_examples=
|
129 |
)
|
130 |
with gr.Tab("Segmentation"):
|
131 |
with gr.Row():
|
@@ -137,7 +141,7 @@ with gr.Blocks() as demo:
|
|
137 |
with gr.Column():
|
138 |
segment_output = gr.Image(label="Predictions:", interactive=False)
|
139 |
with gr.Row():
|
140 |
-
gr.Examples(
|
141 |
seg_examples,
|
142 |
inputs=[segment_input, segment_model_id, segment_threshold],
|
143 |
outputs=segment_output,
|
@@ -156,7 +160,7 @@ with gr.Blocks() as demo:
|
|
156 |
label="Predictions:", show_label=True, num_top_classes=5
|
157 |
)
|
158 |
with gr.Row():
|
159 |
-
gr.Examples(
|
160 |
cls_examples,
|
161 |
inputs=[classify_input, classify_model_id, classify_threshold],
|
162 |
outputs=classify_output,
|
|
|
4 |
from datasets import load_dataset
|
5 |
from ultralyticsplus import YOLO, render_result, postprocess_classify_output
|
6 |
|
7 |
+
from utils import load_models_from_txt_files, get_dataset_id_from_model_id, get_task_from_readme
|
8 |
|
9 |
EXAMPLE_IMAGE_DIR = 'example_images'
|
10 |
|
|
|
17 |
|
18 |
# load model ids and default models
|
19 |
det_model_ids, seg_model_ids, cls_model_ids = load_models_from_txt_files()
|
20 |
+
task_to_model_ids = {'detect': det_model_ids, 'segment': seg_model_ids, 'classify': cls_model_ids}
|
21 |
det_model = YOLO(DEFAULT_DET_MODEL_ID)
|
22 |
det_model_id = DEFAULT_DET_MODEL_ID
|
23 |
seg_model = YOLO(DEFAULT_SEG_MODEL_ID)
|
|
|
26 |
cls_model_id = DEFAULT_CLS_MODEL_ID
|
27 |
|
28 |
|
29 |
+
def get_examples(task):
|
30 |
examples = []
|
|
|
31 |
Path(EXAMPLE_IMAGE_DIR).mkdir(parents=True, exist_ok=True)
|
32 |
+
for model_id in task_to_model_ids[task]:
|
33 |
+
dataset_id = get_dataset_id_from_model_id(model_id)
|
34 |
+
ds = load_dataset(dataset_id, name="mini")["validation"]
|
35 |
+
for ind in range(min(2, len(ds))):
|
36 |
+
jpeg_image_file = ds[ind]["image"]
|
37 |
+
image_file_path = str(Path(EXAMPLE_IMAGE_DIR) / f"{task}_example_{ind}.jpg")
|
38 |
+
jpeg_image_file.save(image_file_path, format='JPEG', quality=100)
|
39 |
+
image_path = os.path.abspath(image_file_path)
|
40 |
+
examples.append([image_path, model_id, 0.25])
|
41 |
return examples
|
42 |
|
43 |
+
|
44 |
# load default examples using default datasets
|
45 |
+
det_examples = get_examples('detect')
|
46 |
+
seg_examples = get_examples('segment')
|
47 |
+
cls_examples = get_examples('classify')
|
48 |
|
49 |
|
50 |
def predict(image, model_id, threshold):
|
|
|
124 |
with gr.Column():
|
125 |
detect_output = gr.Image(label="Predictions:", interactive=False)
|
126 |
with gr.Row():
|
127 |
+
detect_examples = gr.Examples(
|
128 |
det_examples,
|
129 |
inputs=[detect_input, detect_model_id, detect_threshold],
|
130 |
outputs=detect_output,
|
131 |
fn=predict,
|
132 |
+
cache_examples=False,
|
133 |
)
|
134 |
with gr.Tab("Segmentation"):
|
135 |
with gr.Row():
|
|
|
141 |
with gr.Column():
|
142 |
segment_output = gr.Image(label="Predictions:", interactive=False)
|
143 |
with gr.Row():
|
144 |
+
segment_examples = gr.Examples(
|
145 |
seg_examples,
|
146 |
inputs=[segment_input, segment_model_id, segment_threshold],
|
147 |
outputs=segment_output,
|
|
|
160 |
label="Predictions:", show_label=True, num_top_classes=5
|
161 |
)
|
162 |
with gr.Row():
|
163 |
+
classify_examples = gr.Examples(
|
164 |
cls_examples,
|
165 |
inputs=[classify_input, classify_model_id, classify_threshold],
|
166 |
outputs=classify_output,
|
utils.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
DET_MODELS_FILENAME = 'det_models.txt'
|
2 |
SEG_MODELS_FILENAME = 'seg_models.txt'
|
3 |
CLS_MODELS_FILENAME = 'cls_models.txt'
|
@@ -11,4 +15,62 @@ def load_models_from_txt_files():
|
|
11 |
seg_models = [line.strip() for line in file]
|
12 |
with open(CLS_MODELS_FILENAME, 'r') as file:
|
13 |
cls_models = [line.strip() for line in file]
|
14 |
-
return det_models, seg_models, cls_models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import re
|
3 |
+
|
4 |
+
|
5 |
DET_MODELS_FILENAME = 'det_models.txt'
|
6 |
SEG_MODELS_FILENAME = 'seg_models.txt'
|
7 |
CLS_MODELS_FILENAME = 'cls_models.txt'
|
|
|
15 |
seg_models = [line.strip() for line in file]
|
16 |
with open(CLS_MODELS_FILENAME, 'r') as file:
|
17 |
cls_models = [line.strip() for line in file]
|
18 |
+
return det_models, seg_models, cls_models
|
19 |
+
|
20 |
+
|
21 |
+
def get_dataset_id_from_model_id(model_id):
|
22 |
+
"""
|
23 |
+
Gets the dataset ID from the README file for a given Hugging Face model ID.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
model_id (str): The Hugging Face model ID.
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
The dataset ID as a string, or None if the dataset ID cannot be found.
|
30 |
+
"""
|
31 |
+
# Define the URL of the README file for the model
|
32 |
+
readme_url = f"https://huggingface.co/{model_id}/raw/main/README.md"
|
33 |
+
|
34 |
+
# Make a GET request to the README URL and get the contents
|
35 |
+
response = requests.get(readme_url)
|
36 |
+
readme_contents = response.text
|
37 |
+
|
38 |
+
# Use regular expressions to search for the dataset ID in the README file
|
39 |
+
match = re.search(r"datasets:\s*\n- (\S+)", readme_contents)
|
40 |
+
|
41 |
+
# If a match is found, extract the dataset ID and return it. Otherwise, return None.
|
42 |
+
if match is not None:
|
43 |
+
dataset_id = match.group(1)
|
44 |
+
return dataset_id
|
45 |
+
else:
|
46 |
+
return None
|
47 |
+
|
48 |
+
|
49 |
+
def get_task_from_readme(model_id):
|
50 |
+
"""
|
51 |
+
Gets the task from the README file for a given Hugging Face model ID.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
model_id (str): The Hugging Face model ID.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
The task as a string ("detect", "segment", or "classify"), or None if the task cannot be found.
|
58 |
+
"""
|
59 |
+
# Define the URL of the README file for the model
|
60 |
+
readme_url = f"https://huggingface.co/{model_id}/raw/main/README.md"
|
61 |
+
|
62 |
+
# Make a GET request to the README URL and get the contents
|
63 |
+
response = requests.get(readme_url)
|
64 |
+
readme_contents = response.text
|
65 |
+
|
66 |
+
# Use regular expressions to search for the task in the tags section of the README file
|
67 |
+
if re.search(r"tags:", readme_contents):
|
68 |
+
if re.search(r"object-detection", readme_contents):
|
69 |
+
return "detect"
|
70 |
+
elif re.search(r"image-segmentation", readme_contents):
|
71 |
+
return "segment"
|
72 |
+
elif re.search(r"image-classification", readme_contents):
|
73 |
+
return "classify"
|
74 |
+
|
75 |
+
# If the task cannot be found, return None
|
76 |
+
return None
|