Spaces:
Runtime error
Runtime error
File size: 2,418 Bytes
bb16062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import json
import gradio as gr
import yolov5
from PIL import Image
from huggingface_hub import hf_hub_download
app_title = "Aerial Sheep Object Detection"
models_ids = ['keremberke/yolov5n-aerial-sheep', 'keremberke/yolov5s-aerial-sheep', 'keremberke/yolov5m-aerial-sheep']
article = f"<p style='text-align: center'> <a href='https://huggingface.co/{models_ids[-1]}'>model</a> | <a href='https://huggingface.co/keremberke/aerial-sheep-object-detection'>dataset</a> | <a href='https://github.com/keremberke/awesome-yolov5-models'>awesome-yolov5-models</a> </p>"
current_model_id = models_ids[-1]
model = yolov5.load(current_model_id)
examples = [['test_images/DJI_0039_MOV-252_jpg.rf.a9d3f531dc347711c06539af59ca7329.jpg', 0.25, 'keremberke/yolov5m-aerial-sheep'], ['test_images/DJI_0040_MOV-141_jpg.rf.b2b23a4bd86ee5f50ff4a063ab4671ca.jpg', 0.25, 'keremberke/yolov5m-aerial-sheep'], ['test_images/DJI_0043_MOV-102_jpg.rf.4f0018c8c5de23731256755050f0819a.jpg', 0.25, 'keremberke/yolov5m-aerial-sheep'], ['test_images/DJI_0043_MOV-161_jpg.rf.a2197218b8c9f58272e59d7a8c6cf493.jpg', 0.25, 'keremberke/yolov5m-aerial-sheep'], ['test_images/DJI_0043_MOV-84_jpg.rf.22ea78648b21f64c276ab348ba82cf49.jpg', 0.25, 'keremberke/yolov5m-aerial-sheep'], ['test_images/img_373_jpg.rf.494e557cd96f79f20750ab7942c9d9c5.jpg', 0.25, 'keremberke/yolov5m-aerial-sheep']]
def predict(image, threshold=0.25, model_id=None):
# update model if required
global current_model_id
global model
if model_id != current_model_id:
model = yolov5.load(model_id)
current_model_id = model_id
# get model input size
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
with open(config_path, "r") as f:
config = json.load(f)
input_size = config["input_size"]
# perform inference
model.conf = threshold
results = model(image, size=input_size)
numpy_image = results.render()[0]
output_image = Image.fromarray(numpy_image)
return output_image
gr.Interface(
title=app_title,
description="Created by 'keremberke'",
article=article,
fn=predict,
inputs=[
gr.Image(type="pil"),
gr.Slider(maximum=1, step=0.01, value=0.25),
gr.Dropdown(models_ids, value=models_ids[-1]),
],
outputs=gr.Image(type="pil"),
examples=examples,
cache_examples=True if examples else False,
).launch(enable_queue=True)
|