import numpy as np import tensorflow as tf import gradio as gr from huggingface_hub import from_pretrained_keras import cv2 img_size = 28 model = from_pretrained_keras("keras-io/keras-reptile") def read_image(image): image = tf.convert_to_tensor(image) image = cv2.resize() image = image / 127.5 - 1 return image def infer(model, image_tensor): predictions = model.predict(np.expand_dims((image_tensor), axis=0)) predictions = np.squeeze(predictions) predictions = np.argmax(predictions, axis=0) return predictions def display_result(input_image): image_tensor = read_image(input_image) prediction_label = infer(model=model, image_tensor=image_tensor) return prediction_label input = gr.inputs.Image() examples = [["/content/drive/MyDrive/boot.jpg"], ["/content/drive/MyDrive/sneaker.jpg"]] title = "Few shot learning" description = "Upload an image or select from examples to classify fashion items." gr.Interface(display_result, input, outputs="text", examples=examples, allow_flagging=False, analytics_enabled=False, title=title, description=description).launch(enable_queue=True) gr.launch()