import numpy as np import tensorflow as tf import gradio as gr from huggingface_hub import from_pretrained_keras import cv2 model = from_pretrained_keras("keras-io/deeplabv3p-resnet50") colormap = np.array([[0,0,0], [31,119,180], [44,160,44], [44, 127, 125], [52, 225, 143], [217, 222, 163], [254, 128, 37], [130, 162, 128], [121, 7, 166], [136, 183, 248], [85, 1, 76], [22, 23, 62], [159, 50, 15], [101, 93, 152], [252, 229, 92], [167, 173, 17], [218, 252, 252], [238, 126, 197], [116, 157, 140], [214, 220, 252]], dtype=np.uint8) img_size = 512 def read_image(image): image = tf.convert_to_tensor(image) image.set_shape([None, None, 3]) image = tf.image.resize(images=image, size=[img_size, img_size]) image = image / 127.5 - 1 return image def infer(model, image_tensor): predictions = model.predict(np.expand_dims((image_tensor), axis=0)) predictions = np.squeeze(predictions) predictions = np.argmax(predictions, axis=2) return predictions def decode_segmentation_masks(mask, colormap, n_classes): r = np.zeros_like(mask).astype(np.uint8) g = np.zeros_like(mask).astype(np.uint8) b = np.zeros_like(mask).astype(np.uint8) for l in range(0, n_classes): idx = mask == l r[idx] = colormap[l, 0] g[idx] = colormap[l, 1] b[idx] = colormap[l, 2] rgb = np.stack([r, g, b], axis=2) return rgb def get_overlay(image, colored_mask): image = tf.keras.preprocessing.image.array_to_img(image) image = np.array(image).astype(np.uint8) overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0) return overlay def segmentation(input_image): image_tensor = read_image(input_image) prediction_mask = infer(image_tensor=image_tensor, model=model) prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20) overlay = get_overlay(image_tensor, prediction_colormap) return (overlay, prediction_colormap) i = gr.inputs.Image() o = [gr.Image(), gr.Image()] examples = ["example_image_1.jpg", "example_image_2.jpeg", "example_image_3.jpeg"] title = "Human Part Segmentation" description = "Upload an image or select from examples to segment out different human parts." article = "
" gr.Interface(segmentation, i, o, examples=examples, allow_flagging=False, analytics_enabled=False, title=title, description=description, article=article).launch(enable_queue=True)