Spaces:
Runtime error
Runtime error
jodh-intel
commited on
Commit
·
1442fb8
1
Parent(s):
cf0a724
ui: Add system features
Browse filesAdd a list of interesting detected system features, plus an expandable
table (hidden by default) that includes more debug information.
Signed-off-by: James O. D. Hunt <[email protected]>
- app.py +168 -8
- requirements.txt +13 -2
app.py
CHANGED
@@ -1,35 +1,195 @@
|
|
1 |
from transformers import AutoModel, AutoTokenizer, LlamaTokenizer, LlamaForCausalLM
|
2 |
import gradio as gr
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
model = model.eval()
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def predict(input, history=None):
|
12 |
if history is None:
|
13 |
history = []
|
14 |
-
new_user_input_ids = tokenizer.encode(
|
|
|
|
|
15 |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
16 |
-
history = model.generate(
|
|
|
|
|
17 |
# convert the tokens to text, and then split the responses into the right format
|
18 |
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
19 |
-
response = [
|
|
|
|
|
20 |
return response, history
|
21 |
|
22 |
|
23 |
with gr.Blocks() as demo:
|
24 |
-
gr.Markdown(
|
25 |
-
|
|
|
|
|
26 |
state = gr.State([])
|
27 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400)
|
28 |
with gr.Row():
|
29 |
with gr.Column(scale=4):
|
30 |
-
txt = gr.Textbox(
|
|
|
|
|
31 |
with gr.Column(scale=1):
|
32 |
button = gr.Button("Generate")
|
33 |
txt.submit(predict, [txt, state], [chatbot, state])
|
34 |
button.click(predict, [txt, state], [chatbot, state])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
demo.queue().launch(share=True, server_name="0.0.0.0")
|
|
|
1 |
from transformers import AutoModel, AutoTokenizer, LlamaTokenizer, LlamaForCausalLM
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
import os
|
5 |
+
import io
|
6 |
+
import sys
|
7 |
+
import platform
|
8 |
+
import intel_extension_for_pytorch as ipex
|
9 |
+
import intel_extension_for_pytorch._C as ipex_core
|
10 |
+
from cpuinfo import get_cpu_info
|
11 |
+
from contextlib import redirect_stdout
|
12 |
+
|
13 |
|
14 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
+
ROOT = '/'
|
17 |
+
SELF_ROOT = '/proc/self/root'
|
18 |
+
|
19 |
+
tokenizer = LlamaTokenizer.from_pretrained(
|
20 |
+
"lmsys/vicuna-7b-v1.3", trust_remote_code=True
|
21 |
+
)
|
22 |
+
model = LlamaForCausalLM.from_pretrained(
|
23 |
+
"lmsys/vicuna-7b-v1.3", trust_remote_code=True
|
24 |
+
).to(DEVICE)
|
25 |
model = model.eval()
|
26 |
|
27 |
+
|
28 |
+
def in_chroot():
|
29 |
+
'''
|
30 |
+
Return true if running in a chroot environment.
|
31 |
+
'''
|
32 |
+
try:
|
33 |
+
root_stat = os.stat(ROOT)
|
34 |
+
self_stat = os.stat(SELF_ROOT)
|
35 |
+
except FileNotFoundError as e:
|
36 |
+
sys.exit(f"ERROR: Failed to stat: {e}")
|
37 |
+
|
38 |
+
root_inode = root_stat.st_ino
|
39 |
+
self_inode = self_stat.st_ino
|
40 |
+
|
41 |
+
# Inode 2 is the root inode for most filesystems.
|
42 |
+
# However, XFS uses 128 for root.
|
43 |
+
if root_inode not in [2, 128]:
|
44 |
+
return True
|
45 |
+
|
46 |
+
return not (root_inode == self_inode)
|
47 |
+
|
48 |
+
|
49 |
+
def get_features():
|
50 |
+
'''
|
51 |
+
Returns a dictionary of all feature:
|
52 |
+
|
53 |
+
key: feature name.
|
54 |
+
value: Boolean showing if feature available.
|
55 |
+
'''
|
56 |
+
|
57 |
+
cpu_info = get_cpu_info()
|
58 |
+
flags = cpu_info["flags"]
|
59 |
+
|
60 |
+
detect_ipex_amx_enabled = lambda: ipex_core._get_current_isa_level() == 'AMX'
|
61 |
+
detect_ipex_amx_available = (
|
62 |
+
lambda: ipex_core._get_highest_cpu_support_isa_level() == 'AMX'
|
63 |
+
)
|
64 |
+
|
65 |
+
features = {
|
66 |
+
'VM': 'hypervisor' in flags,
|
67 |
+
'TDX TD': 'tdx_guest' in flags,
|
68 |
+
'AMX available': 'amx_tile' in flags,
|
69 |
+
'AMX-BF16 available': 'amx_bf16' in flags,
|
70 |
+
'AMX-INT8 available': 'amx_int8' in flags,
|
71 |
+
'AVX-VNNI available': 'avx_vnni' in flags,
|
72 |
+
'AVX512-VNNI available': 'avx512_vnni' in flags,
|
73 |
+
'AVX512-FP16 available': 'avx512_fp16' in flags,
|
74 |
+
'AVX512-BF16 available': 'avx512_bf16' in flags,
|
75 |
+
'AMX IPEX available': detect_ipex_amx_available(),
|
76 |
+
'AMX IPEX enabled': detect_ipex_amx_enabled(),
|
77 |
+
}
|
78 |
+
|
79 |
+
return features
|
80 |
+
|
81 |
+
|
82 |
+
def get_debug_details():
|
83 |
+
'''
|
84 |
+
Return a block of markdown text that shows useful debug
|
85 |
+
information.
|
86 |
+
'''
|
87 |
+
|
88 |
+
# ipex.version() prints to stdout, so redirect stdout to
|
89 |
+
# capture the output.
|
90 |
+
buffer = io.StringIO()
|
91 |
+
|
92 |
+
with redirect_stdout(buffer):
|
93 |
+
ipex.version()
|
94 |
+
|
95 |
+
ipex_version_details = buffer.getvalue().replace("\n", ", ")
|
96 |
+
|
97 |
+
ipex_current_isa_level = ipex_core._get_current_isa_level()
|
98 |
+
ipex_max_isa_level = ipex_core._get_highest_cpu_support_isa_level()
|
99 |
+
|
100 |
+
ipex_env_var = os.getenv('ATEN_CPU_CAPABILITY')
|
101 |
+
onednn_env_var = os.getenv('ONEDNN_MAX_CPU_ISA')
|
102 |
+
|
103 |
+
in_chroot_result = in_chroot()
|
104 |
+
|
105 |
+
cpu_info = get_cpu_info()
|
106 |
+
flags = cpu_info["flags"]
|
107 |
+
|
108 |
+
# Note that rather than using `<details>`, we could use gradio.Accordian(),
|
109 |
+
# but the markdown version is more visually compact.
|
110 |
+
md = f"""
|
111 |
+
<details>
|
112 |
+
<summary>Click to show debug details</summary>
|
113 |
+
|
114 |
+
| Feature | Value |
|
115 |
+
|-|-|
|
116 |
+
| Arch | `{cpu_info['arch']}` |
|
117 |
+
| CPU | `{cpu_info['brand_raw']}` |
|
118 |
+
| CPU flags | `{flags}` |
|
119 |
+
| Python version | `{sys.version}` (implementation: `{platform.python_implementation()}`) |
|
120 |
+
| Python version details | `{sys.version_info}` |
|
121 |
+
| PyTorch version | `{torch.__version__}` |
|
122 |
+
| IPEX version | `{ipex.ipex_version}` |
|
123 |
+
| IPEX CPU detected | `{ipex_core._has_cpu()}` |
|
124 |
+
| IPEX XPU detected | `{ipex_core._has_xpu()}` |
|
125 |
+
| IPEX version details | `{ipex_version_details}` |
|
126 |
+
| IPEX env var `ATEN_CPU_CAPABILITY` | `{ipex_env_var}` |
|
127 |
+
| IPEX current ISA level | `{ipex_current_isa_level}` |
|
128 |
+
| IPEX max ISA level | `{ipex_max_isa_level}` |
|
129 |
+
| oneDNN env var `ONEDNN_MAX_CPU_ISA` | `{onednn_env_var}` |
|
130 |
+
| in chroot | `{in_chroot_result}` |
|
131 |
+
|
132 |
+
</details>
|
133 |
+
"""
|
134 |
+
|
135 |
+
return md
|
136 |
+
|
137 |
+
|
138 |
def predict(input, history=None):
|
139 |
if history is None:
|
140 |
history = []
|
141 |
+
new_user_input_ids = tokenizer.encode(
|
142 |
+
input + tokenizer.eos_token, return_tensors='pt'
|
143 |
+
)
|
144 |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
145 |
+
history = model.generate(
|
146 |
+
bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id
|
147 |
+
).tolist()
|
148 |
# convert the tokens to text, and then split the responses into the right format
|
149 |
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
150 |
+
response = [
|
151 |
+
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
152 |
+
] # convert to tuples of list
|
153 |
return response, history
|
154 |
|
155 |
|
156 |
with gr.Blocks() as demo:
|
157 |
+
gr.Markdown(
|
158 |
+
'''## Confidential HuggingFace Runner
|
159 |
+
'''
|
160 |
+
)
|
161 |
state = gr.State([])
|
162 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400)
|
163 |
with gr.Row():
|
164 |
with gr.Column(scale=4):
|
165 |
+
txt = gr.Textbox(
|
166 |
+
show_label=False, placeholder="Enter text and press enter"
|
167 |
+
).style(container=False)
|
168 |
with gr.Column(scale=1):
|
169 |
button = gr.Button("Generate")
|
170 |
txt.submit(predict, [txt, state], [chatbot, state])
|
171 |
button.click(predict, [txt, state], [chatbot, state])
|
172 |
+
|
173 |
+
with gr.Row():
|
174 |
+
features_dict = get_features()
|
175 |
+
|
176 |
+
all_features = features_dict.keys()
|
177 |
+
|
178 |
+
# Get a list of feature names that are actually set/available
|
179 |
+
set_features = [key for key in features_dict if features_dict[key]]
|
180 |
+
|
181 |
+
gr.CheckboxGroup(
|
182 |
+
all_features,
|
183 |
+
label="Features",
|
184 |
+
# Make the boxes read-only
|
185 |
+
interactive=False,
|
186 |
+
# Specify which features were detected
|
187 |
+
value=set_features,
|
188 |
+
info="Features detected from environment",
|
189 |
+
)
|
190 |
+
|
191 |
+
with gr.Row():
|
192 |
+
debug_details = get_debug_details()
|
193 |
+
gr.Markdown(debug_details)
|
194 |
+
|
195 |
demo.queue().launch(share=True, server_name="0.0.0.0")
|
requirements.txt
CHANGED
@@ -1,6 +1,17 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
cpm_kernels
|
3 |
icetk
|
4 |
gradio==3.50.2
|
5 |
accelerate
|
6 |
-
git+https://github.com/huggingface/transformers
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# For pytorch
|
2 |
+
--find-links https://download.pytorch.org/whl/torch_stable.html
|
3 |
+
|
4 |
+
# For ipex
|
5 |
+
--trusted-host pytorch-extension.intel.com
|
6 |
+
--extra-index-url http://pytorch-extension.intel.com/release-whl/stable/cpu/us/intel-extension-for-pytorchtorch
|
7 |
+
|
8 |
cpm_kernels
|
9 |
icetk
|
10 |
gradio==3.50.2
|
11 |
accelerate
|
12 |
+
git+https://github.com/huggingface/transformers
|
13 |
+
py-cpuinfo
|
14 |
+
|
15 |
+
# Versions must match
|
16 |
+
torch==2.3.0+cpu
|
17 |
+
intel-extension-for-pytorch==2.3.0
|