Spaces:
Running
on
Zero
Running
on
Zero
fda
Browse files- babyagi/classesa/diamond.py +88 -0
babyagi/classesa/diamond.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import psycopg2
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
|
4 |
+
class ProductDatabase:
|
5 |
+
def __init__(self, database_url):
|
6 |
+
self.database_url = database_url
|
7 |
+
self.conn = None
|
8 |
+
self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
9 |
+
|
10 |
+
def connect(self):
|
11 |
+
self.conn = psycopg2.connect(self.database_url)
|
12 |
+
|
13 |
+
def close(self):
|
14 |
+
if self.conn:
|
15 |
+
self.conn.close()
|
16 |
+
|
17 |
+
def setup_vector_extension_and_column(self):
|
18 |
+
with self.conn.cursor() as cursor:
|
19 |
+
# pgvector拡張機能のインストール
|
20 |
+
cursor.execute("CREATE EXTENSION IF NOT EXISTS vector;")
|
21 |
+
|
22 |
+
# ベクトルカラムの追加
|
23 |
+
cursor.execute("ALTER TABLE products ADD COLUMN IF NOT EXISTS vector_col vector(384);")
|
24 |
+
|
25 |
+
self.conn.commit()
|
26 |
+
|
27 |
+
def get_embedding(self, text):
|
28 |
+
embedding = self.model.encode(text)
|
29 |
+
return embedding
|
30 |
+
|
31 |
+
def insert_vector(self, product_id, text):
|
32 |
+
vector = self.get_embedding(text).tolist() # ndarray をリストに変換
|
33 |
+
with self.conn.cursor() as cursor:
|
34 |
+
cursor.execute("UPDATE products SET vector_col = %s WHERE id = %s", (vector, product_id))
|
35 |
+
self.conn.commit()
|
36 |
+
|
37 |
+
def search_similar_vectors(self, query_text, top_k=5):
|
38 |
+
query_vector = self.get_embedding(query_text).tolist() # ndarray をリストに変換
|
39 |
+
with self.conn.cursor() as cursor:
|
40 |
+
cursor.execute("""
|
41 |
+
SELECT id, vector_col <=> %s::vector AS distance
|
42 |
+
FROM products
|
43 |
+
ORDER BY distance
|
44 |
+
LIMIT %s;
|
45 |
+
""", (query_vector, top_k))
|
46 |
+
results = cursor.fetchall()
|
47 |
+
return results
|
48 |
+
|
49 |
+
def main():
|
50 |
+
# データベース接続情報
|
51 |
+
DATABASE_URL = "postgresql://miyataken999:[email protected]/neondb?sslmode=require"
|
52 |
+
|
53 |
+
# ProductDatabaseクラスのインスタンスを作成
|
54 |
+
db = ProductDatabase(DATABASE_URL)
|
55 |
+
|
56 |
+
# データベースに接続
|
57 |
+
db.connect()
|
58 |
+
|
59 |
+
try:
|
60 |
+
# pgvector拡張機能のインストールとカラムの追加
|
61 |
+
db.setup_vector_extension_and_column()
|
62 |
+
print("Vector extension installed and column added successfully.")
|
63 |
+
|
64 |
+
# サンプルデータの挿入
|
65 |
+
sample_text = """検査にはどのぐらい時間かかりますか?⇒当日に分かります。
|
66 |
+
法人取引やってますか?⇒大丈夫ですよ。成約時に必要な書類の説明
|
67 |
+
LINEで金粉送って、査定はできますか?⇒できますが、今お話した内容と同様で、検査が必要な旨を返すだけなので、金粉ではなく、他のお品物でLINE査定くださいと。
|
68 |
+
分かりました、またどうするか検討して連絡しますと"""
|
69 |
+
sample_product_id = 1 # 実際の製品IDを使用
|
70 |
+
db.insert_vector(sample_product_id, sample_text)
|
71 |
+
db.insert_vector(2, sample_text)
|
72 |
+
|
73 |
+
print(f"Vector inserted for product ID {sample_product_id}.")
|
74 |
+
|
75 |
+
|
76 |
+
# ベクトル検索
|
77 |
+
query_text = "今お話した内容と同様で"
|
78 |
+
results = db.search_similar_vectors(query_text)
|
79 |
+
print("Search results:")
|
80 |
+
for result in results:
|
81 |
+
print(result)
|
82 |
+
|
83 |
+
finally:
|
84 |
+
# 接続を閉じる
|
85 |
+
db.close()
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
main()
|