kenken999 commited on
Commit
a61be63
·
1 Parent(s): c70e432
chat_history.db CHANGED
Binary files a/chat_history.db and b/chat_history.db differ
 
controllers/gpt_enginner20240624105436/.gpteng/memory/logs/gen_entrypoint_chat.txt ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ 2024-06-24T10:54:49.207524
3
+ ================================ System Message ================================
4
+
5
+ You will get information about a codebase that is currently on disk in the current folder.
6
+ The user will ask you to write a script that runs the code in a specific way.
7
+ You will answer with code blocks that include all the necessary terminal commands.
8
+ Do not install globally. Do not use sudo.
9
+ Do not explain the code, just give the commands.
10
+ Do not use placeholders, use example values (like . for a folder argument) if necessary.
11
+
12
+
13
+ ================================ Human Message =================================
14
+
15
+
16
+ Make a unix script that
17
+ a) installs dependencies
18
+ b) runs all necessary parts of the codebase (in parallel if necessary)
19
+
20
+ Information about the codebase:
21
+
22
+ ```
23
+ File: requirements.txt
24
+ 1 django
25
+ 2 fastapi
26
+ 3 gradio
27
+ 4 google-api-python-client
28
+
29
+ File: app/models.py
30
+ 1 from django.db import models
31
+ 2
32
+ 3 class Diamond(models.Model):
33
+ 4 carat = models.DecimalField(max_digits=5, decimal_places=2)
34
+ 5 cut = models.CharField(max_length=50)
35
+ 6 color = models.CharField(max_length=50)
36
+ 7 clarity = models.CharField(max_length=50)
37
+ 8 depth = models.DecimalField(max_digits=5, decimal_places=2)
38
+ 9
39
+ 10 class BrandProduct(models.Model):
40
+ 11 brand_name = models.CharField(max_length=50)
41
+ 12 model_name = models.CharField(max_length=50)
42
+ 13 type_number = models.CharField(max_length=50)
43
+ 14 purchase_store = models.CharField(max_length=50)
44
+ 15 purchase_date = models.DateField()
45
+ 16 purchase_price = models.DecimalField(max_digits=10, decimal_places=2)
46
+ 17 accessories = models.TextField()
47
+ 18 condition = models.CharField(max_length=50)
48
+
49
+ File: app/views.py
50
+ 1 from django.shortcuts import render
51
+ 2 from .models import Diamond, BrandProduct
52
+ 3 from fastapi import FastAPI
53
+ 4
54
+ 5 app = FastAPI()
55
+ 6
56
+ 7 @app.get("/diamonds/")
57
+ 8 def get_diamonds():
58
+ 9 diamonds = Diamond.objects.all()
59
+ 10 return {"diamonds": [{"id": d.id, "carat": d.carat, "cut": d.cut, "color": d.color, "clarity": d.clarity, "depth": d.depth} for d in diamonds]}
60
+ 11
61
+ 12 @app.get("/brand_products/")
62
+ 13 def get_brand_products():
63
+ 14 brand_products = BrandProduct.objects.all()
64
+ 15 return {"brand_products": [{"id": bp.id, "brand_name": bp.brand_name, "model_name": bp.model_name, "type_number": bp.type_number, "purchase_store": bp.purchase_store, "purchase_date": bp.purchase_date, "purchase_price": bp.purchase_price, "accessories": bp.accessories, "condition": bp.condition} for bp in brand_products]}
65
+
66
+ File: router.py
67
+ 1 from fastapi import FastAPI, APIRouter
68
+ 2 from app.views import app as django_app
69
+ 3
70
+ 4 router = APIRouter()
71
+ 5
72
+ 6 @router.get("/api/diamonds/")
73
+ 7 def get_diamonds():
74
+ 8 return django_app.get_diamonds()
75
+ 9
76
+ 10 @router.get("/api/brand_products/")
77
+ 11 def get_brand_products():
78
+ 12 return django_app.get_brand_products()
79
+
80
+ File: gradio_app.py
81
+ 1 import gradio as gr
82
+ 2
83
+ 3 def get_diamond_form():
84
+ 4 with gr.Row():
85
+ 5 carat = gr.Number(value=1.0, label="Carat")
86
+ 6 cut = gr.Textbox(label="Cut")
87
+ 7 color = gr.Textbox(label="Color")
88
+ 8 clarity = gr.Textbox(label="Clarity")
89
+ 9 depth = gr.Number(value=1.0, label="Depth")
90
+ 10 return [carat, cut, color, clarity, depth]
91
+ 11
92
+ 12 def get_brand_product_form():
93
+ 13 with gr.Row():
94
+ 14 brand_name = gr.Textbox(label="Brand Name")
95
+ 15 model_name = gr.Textbox(label="Model Name")
96
+ 16 type_number = gr.Textbox(label="Type Number")
97
+ 17 purchase_store = gr.Textbox(label="Purchase Store")
98
+ 18 purchase_date = gr.DatePicker(label="Purchase Date")
99
+ 19 purchase_price = gr.Number(value=1000.0, label="Purchase Price")
100
+ 20 accessories = gr.Textbox(label="Accessories")
101
+ 21 condition = gr.Textbox(label="Condition")
102
+ 22 return [brand_name, model_name, type_number, purchase_store, purchase_date, purchase_price, accessories, condition]
103
+ 23
104
+ 24 gr_interface = gr.Interface(
105
+ 25 fn=None,
106
+ 26 inputs=[get_diamond_form(), get_brand_product_form()],
107
+ 27 outputs="text",
108
+ 28 title="Diamond and Brand Product Appraisal",
109
+ 29 description="Please fill in the required information for appraisal."
110
+ 30 )
111
+ 31 gr_interface.launch()
112
+
113
+ File: Code.gs
114
+ 1 function doPost(e) {
115
+ 2 var data = e.postData.contents;
116
+ 3 var diamond = JSON.parse(data).diamond;
117
+ 4 var brandProduct = JSON.parse(data).brandProduct;
118
+ 5 // Process appraisal logic here
119
+ 6 var result = "Appraisal result: " + diamond.carat + " carat diamond and " + brandProduct.brand_name + " brand product";
120
+ 7 return ContentService.createTextOutput(result).setMimeType(ContentService.MimeType.TEXT);
121
+ 8 }
122
+
123
+ File: sequence_diagram.puml
124
+ 1 @startuml
125
+ 2 participant User as U
126
+ 3 participant GradioApp as GA
127
+ 4 participant GoogleAppsScript as GAS
128
+ 5 participant BackendScript as BS
129
+ 6
130
+ 7 U -> GA: Fill in appraisal form
131
+ 8 GA -> GAS: Submit form data
132
+ 9 GAS -> BS: POST request with form data
133
+ 10 BS -> BS: Process appraisal logic
134
+ 11 BS -> GAS: Return appraisal result
135
+ 12 GAS -> GA: Display appraisal result
136
+ 13 GA -> U: Show appraisal result
137
+ 14 @enduml
138
+
139
+ File: program_description.md
140
+ 1 # Diamond and Brand Product Appraisal System
141
+ 2
142
+ 3 This system allows users to fill in a form with information about a diamond or brand product, and then submits the form data to a backend script for appraisal. The appraisal result is then displayed to the user.
143
+ 4
144
+ 5 The system consists of the following components:
145
+ 6
146
+ 7 * A Gradio frontend that provides a user-friendly interface for filling in the appraisal form
147
+ 8 * A Google Apps Script frontend that handles the form submission and communicates with the backend script
148
+ 9 * A backend script that processes the appraisal logic and returns the result
149
+ 10 * A Django app that provides the API for the backend script to interact with
150
+ 11
151
+ 12 The system uses the following technologies:
152
+ 13
153
+ 14 * Gradio for the frontend
154
+ 15 * Google Apps Script for the frontend and backend communication
155
+ 16 * Django for the backend API
156
+ 17 * FastAPI for the router
157
+ 18 * Python for the backend script
158
+
159
+ ```
160
+
161
+ ================================== Ai Message ==================================
162
+
163
+ Here is a Unix script that installs dependencies and runs the necessary parts of the codebase:
164
+
165
+ ```bash
166
+ #!/bin/bash
167
+
168
+ # Install dependencies
169
+ pip install -r requirements.txt
170
+
171
+ # Run Django migrations
172
+ python manage.py migrate
173
+
174
+ # Run FastAPI app
175
+ uvicorn router:router --host 0.0.0.0 --port 8000 &
176
+
177
+ # Run Gradio app
178
+ python gradio_app.py &
179
+ ```
180
+
181
+ Note: This script assumes that you have a `manage.py` file in the current directory, which is a standard file in Django projects. It also assumes that you want to run the FastAPI app on host `0.0.0.0` and port `8000`. You can change these settings as needed.
controllers/gpt_enginner20240624105436/Code.gs ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ function doPost(e) {
2
+ var data = e.postData.contents;
3
+ var diamond = JSON.parse(data).diamond;
4
+ var brandProduct = JSON.parse(data).brandProduct;
5
+ // Process appraisal logic here
6
+ var result = "Appraisal result: " + diamond.carat + " carat diamond and " + brandProduct.brand_name + " brand product";
7
+ return ContentService.createTextOutput(result).setMimeType(ContentService.MimeType.TEXT);
8
+ }
controllers/gpt_enginner20240624105436/app/models.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from django.db import models
2
+
3
+ class Diamond(models.Model):
4
+ carat = models.DecimalField(max_digits=5, decimal_places=2)
5
+ cut = models.CharField(max_length=50)
6
+ color = models.CharField(max_length=50)
7
+ clarity = models.CharField(max_length=50)
8
+ depth = models.DecimalField(max_digits=5, decimal_places=2)
9
+
10
+ class BrandProduct(models.Model):
11
+ brand_name = models.CharField(max_length=50)
12
+ model_name = models.CharField(max_length=50)
13
+ type_number = models.CharField(max_length=50)
14
+ purchase_store = models.CharField(max_length=50)
15
+ purchase_date = models.DateField()
16
+ purchase_price = models.DecimalField(max_digits=10, decimal_places=2)
17
+ accessories = models.TextField()
18
+ condition = models.CharField(max_length=50)
controllers/gpt_enginner20240624105436/app/views.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from django.shortcuts import render
2
+ from .models import Diamond, BrandProduct
3
+ from fastapi import FastAPI
4
+
5
+ app = FastAPI()
6
+
7
+ @app.get("/diamonds/")
8
+ def get_diamonds():
9
+ diamonds = Diamond.objects.all()
10
+ return {"diamonds": [{"id": d.id, "carat": d.carat, "cut": d.cut, "color": d.color, "clarity": d.clarity, "depth": d.depth} for d in diamonds]}
11
+
12
+ @app.get("/brand_products/")
13
+ def get_brand_products():
14
+ brand_products = BrandProduct.objects.all()
15
+ return {"brand_products": [{"id": bp.id, "brand_name": bp.brand_name, "model_name": bp.model_name, "type_number": bp.type_number, "purchase_store": bp.purchase_store, "purchase_date": bp.purchase_date, "purchase_price": bp.purchase_price, "accessories": bp.accessories, "condition": bp.condition} for bp in brand_products]}
controllers/gpt_enginner20240624105436/gradio_app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def get_diamond_form():
4
+ with gr.Row():
5
+ carat = gr.Number(value=1.0, label="Carat")
6
+ cut = gr.Textbox(label="Cut")
7
+ color = gr.Textbox(label="Color")
8
+ clarity = gr.Textbox(label="Clarity")
9
+ depth = gr.Number(value=1.0, label="Depth")
10
+ return [carat, cut, color, clarity, depth]
11
+
12
+ def get_brand_product_form():
13
+ with gr.Row():
14
+ brand_name = gr.Textbox(label="Brand Name")
15
+ model_name = gr.Textbox(label="Model Name")
16
+ type_number = gr.Textbox(label="Type Number")
17
+ purchase_store = gr.Textbox(label="Purchase Store")
18
+ purchase_date = gr.DatePicker(label="Purchase Date")
19
+ purchase_price = gr.Number(value=1000.0, label="Purchase Price")
20
+ accessories = gr.Textbox(label="Accessories")
21
+ condition = gr.Textbox(label="Condition")
22
+ return [brand_name, model_name, type_number, purchase_store, purchase_date, purchase_price, accessories, condition]
23
+
24
+ gr_interface = gr.Interface(
25
+ fn=None,
26
+ inputs=[get_diamond_form(), get_brand_product_form()],
27
+ outputs="text",
28
+ title="Diamond and Brand Product Appraisal",
29
+ description="Please fill in the required information for appraisal."
30
+ )
31
+ gr_interface.launch()
controllers/gpt_enginner20240624105436/program_description.md ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Diamond and Brand Product Appraisal System
2
+
3
+ This system allows users to fill in a form with information about a diamond or brand product, and then submits the form data to a backend script for appraisal. The appraisal result is then displayed to the user.
4
+
5
+ The system consists of the following components:
6
+
7
+ * A Gradio frontend that provides a user-friendly interface for filling in the appraisal form
8
+ * A Google Apps Script frontend that handles the form submission and communicates with the backend script
9
+ * A backend script that processes the appraisal logic and returns the result
10
+ * A Django app that provides the API for the backend script to interact with
11
+
12
+ The system uses the following technologies:
13
+
14
+ * Gradio for the frontend
15
+ * Google Apps Script for the frontend and backend communication
16
+ * Django for the backend API
17
+ * FastAPI for the router
18
+ * Python for the backend script
controllers/gpt_enginner20240624105436/requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ django
2
+ fastapi
3
+ gradio
4
+ google-api-python-client
controllers/gpt_enginner20240624105436/router.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, APIRouter
2
+ from app.views import app as django_app
3
+
4
+ router = APIRouter()
5
+
6
+ @router.get("/api/diamonds/")
7
+ def get_diamonds():
8
+ return django_app.get_diamonds()
9
+
10
+ @router.get("/api/brand_products/")
11
+ def get_brand_products():
12
+ return django_app.get_brand_products()
controllers/gpt_enginner20240624105436/run.sh ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Install dependencies
4
+ pip install -r requirements.txt
5
+
6
+ # Run Django migrations
7
+ python manage.py migrate
8
+
9
+ # Run FastAPI app
10
+ uvicorn router:router --host 0.0.0.0 --port 8000 &
11
+
12
+ # Run Gradio app
13
+ python gradio_app.py &
controllers/gpt_enginner20240624105436/sequence_diagram.puml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @startuml
2
+ participant User as U
3
+ participant GradioApp as GA
4
+ participant GoogleAppsScript as GAS
5
+ participant BackendScript as BS
6
+
7
+ U -> GA: Fill in appraisal form
8
+ GA -> GAS: Submit form data
9
+ GAS -> BS: POST request with form data
10
+ BS -> BS: Process appraisal logic
11
+ BS -> GAS: Return appraisal result
12
+ GAS -> GA: Display appraisal result
13
+ GA -> U: Show appraisal result
14
+ @enduml