File size: 8,157 Bytes
b18eae1
 
 
 
 
5a16c22
b18eae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a746d34
 
b18eae1
a746d34
 
64ae29a
a746d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ccc1c
a746d34
 
 
 
 
 
 
 
 
 
 
c62714c
b18eae1
 
 
a746d34
b18eae1
a746d34
 
 
 
 
 
b18eae1
a746d34
 
 
b18eae1
a746d34
 
 
 
e1aa577
a746d34
 
 
 
 
b18eae1
 
 
 
202535f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a91f2
 
 
 
 
 
1cb4a0a
87f5bd7
202535f
87f5bd7
202535f
 
87f5bd7
202535f
 
a746d34
 
 
 
b18eae1
 
 
 
 
 
 
 
7c8021a
b18eae1
 
 
1e51f13
b18eae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46ee887
b18eae1
 
 
 
 
 
 
 
 
 
e1aa577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
from mysite.libs.utilities import chat_with_interpreter, completion, process_file,no_process_file
from interpreter import interpreter
import mysite.interpreter.interpreter_config  # インポートするだけで設定が適用されます
import duckdb
#from logger import logger

def format_response(chunk, full_response):
    # Message
    if chunk["type"] == "message":
        full_response += chunk.get("content", "")
        if chunk.get("end", False):
            full_response += "\n"

    # Code
    if chunk["type"] == "code":
        if chunk.get("start", False):
            full_response += "```python\n"
        full_response += chunk.get("content", "").replace("`", "")
        if chunk.get("end", False):
            full_response += "\n```\n"

    # Output
    if chunk["type"] == "confirmation":
        if chunk.get("start", False):
            full_response += "```python\n"
        full_response += chunk.get("content", {}).get("code", "")
        if chunk.get("end", False):
            full_response += "```\n"

    # Console
    if chunk["type"] == "console":
        if chunk.get("start", False):
            full_response += "```python\n"
        if chunk.get("format", "") == "active_line":
            console_content = chunk.get("content", "")
            if console_content is None:
                full_response += "No output available on console."
        if chunk.get("format", "") == "output":
            console_content = chunk.get("content", "")
            full_response += console_content
        if chunk.get("end", False):
            full_response += "\n```\n"

    # Image
    if chunk["type"] == "image":
        if chunk.get("start", False) or chunk.get("end", False):
            full_response += "\n"
        else:
            image_format = chunk.get("format", "")
            if image_format == "base64.png":
                image_content = chunk.get("content", "")
                if image_content:
                    image = Image.open(BytesIO(base64.b64decode(image_content)))
                    new_image = Image.new("RGB", image.size, "white")
                    new_image.paste(image, mask=image.split()[3])
                    buffered = BytesIO()
                    new_image.save(buffered, format="PNG")
                    img_str = base64.b64encode(buffered.getvalue()).decode()
                    full_response += f"![Image](data:image/png;base64,{img_str})\n"

    return full_response

import sqlite3
from datetime import datetime

# SQLiteの設定
db_name = "chat_history.db"

def initialize_db():
    conn = sqlite3.connect(db_name)
    cursor = conn.cursor()
    cursor.execute("""
    CREATE TABLE IF NOT EXISTS history (
        id INTEGER PRIMARY KEY AUTOINCREMENT,
        role TEXT,
        type TEXT,
        content TEXT,
        timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
    )
    """)
    conn.commit()
    conn.close()

def add_message_to_db(role, message_type, content):
    conn = sqlite3.connect(db_name)
    cursor = conn.cursor()
    cursor.execute("INSERT INTO history (role, type, content) VALUES (?, ?, ?)", (role, message_type, content))
    conn.commit()
    conn.close()

def get_recent_messages(limit=5):
    conn = sqlite3.connect(db_name)
    cursor = conn.cursor()
    cursor.execute("SELECT role, type, content FROM history ORDER BY timestamp DESC LIMIT ?", (limit,))
    messages = cursor.fetchall()
    conn.close()
    return messages[::-1]  # 最新の20件を取得して逆順にする

def format_responses(chunk, full_response):
    # This function will format the response from the interpreter
    return full_response + chunk.get("content", "")

def chat_with_interpreter(message, history=None, a=None, b=None, c=None, d=None):
    if message == "reset":
        interpreter.reset()
        return "Interpreter reset", history

    full_response = ""
    recent_messages = get_recent_messages()

    for role, message_type, content in recent_messages:
        entry = {"role": role, "type": message_type, "content": content}
        interpreter.messages.append(entry)

    user_entry = {"role": "user", "type": "message", "content": message}
    interpreter.messages.append(user_entry)
    add_message_to_db("user", "message", message)

    for chunk in interpreter.chat(message, display=False, stream=True):
        if isinstance(chunk, dict):
            full_response = format_response(chunk, full_response)
        else:
            raise TypeError("Expected chunk to be a dictionary")
        print(full_response)  
        yield full_response

    assistant_entry = {"role": "assistant", "type": "message", "content": full_response}
    interpreter.messages.append(assistant_entry)
    add_message_to_db("assistant", "message", full_response)

    yield full_response
    return full_response, history


def chat_with_interpreter_no_stream(message, history=None, a=None, b=None, c=None, d=None):
    if message == "reset":
        interpreter.reset()
        return "Interpreter reset", history

    full_response = ""
    recent_messages = get_recent_messages()

    for role, message_type, content in recent_messages:
        entry = {"role": role, "type": message_type, "content": content}
        interpreter.messages.append(entry)

    user_entry = {"role": "user", "type": "message", "content": message}
    interpreter.messages.append(user_entry)
    add_message_to_db("user", "message", message)

    chunks = interpreter.chat(message, display=False, stream=False)
    for chunk in chunks:
        if isinstance(chunk, dict):
            full_response = format_response(chunk, full_response)
        else:
            raise TypeError("Expected chunk to be a dictionary")
        #yield full_response
    assistant_entry = {"role": "assistant", "type": "message", "content": str(full_response)}
    interpreter.messages.append(assistant_entry)
    add_message_to_db("assistant", "message", str(full_response))

    #yield full_response
    return str(full_response), history


# 初期化
initialize_db()


PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  ">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""

chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface")



gradio_interfaces = gr.ChatInterface(
    fn=chat_with_interpreter,
    chatbot=chatbot,
    fill_height=True,
    additional_inputs_accordion=gr.Accordion(
        label="⚙️ Parameters", open=False, render=False
    ),
    additional_inputs=[
        gr.Slider(
            minimum=0,
            maximum=1,
            step=0.1,
            value=0.95,
            label="Temperature",
            render=False,
        ),
        gr.Slider(
            minimum=128,
            maximum=4096,
            step=1,
            value=512,
            label="Max new tokens",
            render=False,
        ),
        
    ],
    # democs,
    examples=[
        ["HTMLのサンプルを作成して"],
        [
            "CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml"
        ],
    ],
    cache_examples=False,
)

if __name__ == '__main__':
    message = f"""
    postgres connection is this postgresql://miyataken999:[email protected]/neondb?sslmode=require
    create this tabale 
    CREATE TABLE items (
  id INT PRIMARY KEY,
  brand_name VARCHAR(255),
  model_name VARCHAR(255),
  product_number VARCHAR(255),
  purchase_store VARCHAR(255),
  purchase_date DATE,
  purchase_price INT,
  accessories TEXT,
  condition INT,
  metal_type VARCHAR(255),
  metal_weight DECIMAL(10, 2),
  diamond_certification BLOB,
  initial BOOLEAN
);
    
    """
    chat_with_interpreter(message)