Spaces:
Runtime error
Runtime error
Upload utils/logmmse.py with huggingface_hub
Browse files- utils/logmmse.py +247 -0
utils/logmmse.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# The MIT License (MIT)
|
2 |
+
#
|
3 |
+
# Copyright (c) 2015 braindead
|
4 |
+
#
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
#
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
#
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
#
|
23 |
+
#
|
24 |
+
# This code was extracted from the logmmse package (https://pypi.org/project/logmmse/) and I
|
25 |
+
# simply modified the interface to meet my needs.
|
26 |
+
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
import math
|
30 |
+
from scipy.special import expn
|
31 |
+
from collections import namedtuple
|
32 |
+
|
33 |
+
NoiseProfile = namedtuple("NoiseProfile", "sampling_rate window_size len1 len2 win n_fft noise_mu2")
|
34 |
+
|
35 |
+
|
36 |
+
def profile_noise(noise, sampling_rate, window_size=0):
|
37 |
+
"""
|
38 |
+
Creates a profile of the noise in a given waveform.
|
39 |
+
|
40 |
+
:param noise: a waveform containing noise ONLY, as a numpy array of floats or ints.
|
41 |
+
:param sampling_rate: the sampling rate of the audio
|
42 |
+
:param window_size: the size of the window the logmmse algorithm operates on. A default value
|
43 |
+
will be picked if left as 0.
|
44 |
+
:return: a NoiseProfile object
|
45 |
+
"""
|
46 |
+
noise, dtype = to_float(noise)
|
47 |
+
noise += np.finfo(np.float64).eps
|
48 |
+
|
49 |
+
if window_size == 0:
|
50 |
+
window_size = int(math.floor(0.02 * sampling_rate))
|
51 |
+
|
52 |
+
if window_size % 2 == 1:
|
53 |
+
window_size = window_size + 1
|
54 |
+
|
55 |
+
perc = 50
|
56 |
+
len1 = int(math.floor(window_size * perc / 100))
|
57 |
+
len2 = int(window_size - len1)
|
58 |
+
|
59 |
+
win = np.hanning(window_size)
|
60 |
+
win = win * len2 / np.sum(win)
|
61 |
+
n_fft = 2 * window_size
|
62 |
+
|
63 |
+
noise_mean = np.zeros(n_fft)
|
64 |
+
n_frames = len(noise) // window_size
|
65 |
+
for j in range(0, window_size * n_frames, window_size):
|
66 |
+
noise_mean += np.absolute(np.fft.fft(win * noise[j:j + window_size], n_fft, axis=0))
|
67 |
+
noise_mu2 = (noise_mean / n_frames) ** 2
|
68 |
+
|
69 |
+
return NoiseProfile(sampling_rate, window_size, len1, len2, win, n_fft, noise_mu2)
|
70 |
+
|
71 |
+
|
72 |
+
def denoise(wav, noise_profile: NoiseProfile, eta=0.15):
|
73 |
+
"""
|
74 |
+
Cleans the noise from a speech waveform given a noise profile. The waveform must have the
|
75 |
+
same sampling rate as the one used to create the noise profile.
|
76 |
+
|
77 |
+
:param wav: a speech waveform as a numpy array of floats or ints.
|
78 |
+
:param noise_profile: a NoiseProfile object that was created from a similar (or a segment of
|
79 |
+
the same) waveform.
|
80 |
+
:param eta: voice threshold for noise update. While the voice activation detection value is
|
81 |
+
below this threshold, the noise profile will be continuously updated throughout the audio.
|
82 |
+
Set to 0 to disable updating the noise profile.
|
83 |
+
:return: the clean wav as a numpy array of floats or ints of the same length.
|
84 |
+
"""
|
85 |
+
wav, dtype = to_float(wav)
|
86 |
+
wav += np.finfo(np.float64).eps
|
87 |
+
p = noise_profile
|
88 |
+
|
89 |
+
nframes = int(math.floor(len(wav) / p.len2) - math.floor(p.window_size / p.len2))
|
90 |
+
x_final = np.zeros(nframes * p.len2)
|
91 |
+
|
92 |
+
aa = 0.98
|
93 |
+
mu = 0.98
|
94 |
+
ksi_min = 10 ** (-25 / 10)
|
95 |
+
|
96 |
+
x_old = np.zeros(p.len1)
|
97 |
+
xk_prev = np.zeros(p.len1)
|
98 |
+
noise_mu2 = p.noise_mu2
|
99 |
+
for k in range(0, nframes * p.len2, p.len2):
|
100 |
+
insign = p.win * wav[k:k + p.window_size]
|
101 |
+
|
102 |
+
spec = np.fft.fft(insign, p.n_fft, axis=0)
|
103 |
+
sig = np.absolute(spec)
|
104 |
+
sig2 = sig ** 2
|
105 |
+
|
106 |
+
gammak = np.minimum(sig2 / noise_mu2, 40)
|
107 |
+
|
108 |
+
if xk_prev.all() == 0:
|
109 |
+
ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
|
110 |
+
else:
|
111 |
+
ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
|
112 |
+
ksi = np.maximum(ksi_min, ksi)
|
113 |
+
|
114 |
+
log_sigma_k = gammak * ksi/(1 + ksi) - np.log(1 + ksi)
|
115 |
+
vad_decision = np.sum(log_sigma_k) / p.window_size
|
116 |
+
if vad_decision < eta:
|
117 |
+
noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
|
118 |
+
|
119 |
+
a = ksi / (1 + ksi)
|
120 |
+
vk = a * gammak
|
121 |
+
ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
|
122 |
+
hw = a * np.exp(ei_vk)
|
123 |
+
sig = sig * hw
|
124 |
+
xk_prev = sig ** 2
|
125 |
+
xi_w = np.fft.ifft(hw * spec, p.n_fft, axis=0)
|
126 |
+
xi_w = np.real(xi_w)
|
127 |
+
|
128 |
+
x_final[k:k + p.len2] = x_old + xi_w[0:p.len1]
|
129 |
+
x_old = xi_w[p.len1:p.window_size]
|
130 |
+
|
131 |
+
output = from_float(x_final, dtype)
|
132 |
+
output = np.pad(output, (0, len(wav) - len(output)), mode="constant")
|
133 |
+
return output
|
134 |
+
|
135 |
+
|
136 |
+
## Alternative VAD algorithm to webrctvad. It has the advantage of not requiring to install that
|
137 |
+
## darn package and it also works for any sampling rate. Maybe I'll eventually use it instead of
|
138 |
+
## webrctvad
|
139 |
+
# def vad(wav, sampling_rate, eta=0.15, window_size=0):
|
140 |
+
# """
|
141 |
+
# TODO: fix doc
|
142 |
+
# Creates a profile of the noise in a given waveform.
|
143 |
+
#
|
144 |
+
# :param wav: a waveform containing noise ONLY, as a numpy array of floats or ints.
|
145 |
+
# :param sampling_rate: the sampling rate of the audio
|
146 |
+
# :param window_size: the size of the window the logmmse algorithm operates on. A default value
|
147 |
+
# will be picked if left as 0.
|
148 |
+
# :param eta: voice threshold for noise update. While the voice activation detection value is
|
149 |
+
# below this threshold, the noise profile will be continuously updated throughout the audio.
|
150 |
+
# Set to 0 to disable updating the noise profile.
|
151 |
+
# """
|
152 |
+
# wav, dtype = to_float(wav)
|
153 |
+
# wav += np.finfo(np.float64).eps
|
154 |
+
#
|
155 |
+
# if window_size == 0:
|
156 |
+
# window_size = int(math.floor(0.02 * sampling_rate))
|
157 |
+
#
|
158 |
+
# if window_size % 2 == 1:
|
159 |
+
# window_size = window_size + 1
|
160 |
+
#
|
161 |
+
# perc = 50
|
162 |
+
# len1 = int(math.floor(window_size * perc / 100))
|
163 |
+
# len2 = int(window_size - len1)
|
164 |
+
#
|
165 |
+
# win = np.hanning(window_size)
|
166 |
+
# win = win * len2 / np.sum(win)
|
167 |
+
# n_fft = 2 * window_size
|
168 |
+
#
|
169 |
+
# wav_mean = np.zeros(n_fft)
|
170 |
+
# n_frames = len(wav) // window_size
|
171 |
+
# for j in range(0, window_size * n_frames, window_size):
|
172 |
+
# wav_mean += np.absolute(np.fft.fft(win * wav[j:j + window_size], n_fft, axis=0))
|
173 |
+
# noise_mu2 = (wav_mean / n_frames) ** 2
|
174 |
+
#
|
175 |
+
# wav, dtype = to_float(wav)
|
176 |
+
# wav += np.finfo(np.float64).eps
|
177 |
+
#
|
178 |
+
# nframes = int(math.floor(len(wav) / len2) - math.floor(window_size / len2))
|
179 |
+
# vad = np.zeros(nframes * len2, dtype=np.bool)
|
180 |
+
#
|
181 |
+
# aa = 0.98
|
182 |
+
# mu = 0.98
|
183 |
+
# ksi_min = 10 ** (-25 / 10)
|
184 |
+
#
|
185 |
+
# xk_prev = np.zeros(len1)
|
186 |
+
# noise_mu2 = noise_mu2
|
187 |
+
# for k in range(0, nframes * len2, len2):
|
188 |
+
# insign = win * wav[k:k + window_size]
|
189 |
+
#
|
190 |
+
# spec = np.fft.fft(insign, n_fft, axis=0)
|
191 |
+
# sig = np.absolute(spec)
|
192 |
+
# sig2 = sig ** 2
|
193 |
+
#
|
194 |
+
# gammak = np.minimum(sig2 / noise_mu2, 40)
|
195 |
+
#
|
196 |
+
# if xk_prev.all() == 0:
|
197 |
+
# ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
|
198 |
+
# else:
|
199 |
+
# ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
|
200 |
+
# ksi = np.maximum(ksi_min, ksi)
|
201 |
+
#
|
202 |
+
# log_sigma_k = gammak * ksi / (1 + ksi) - np.log(1 + ksi)
|
203 |
+
# vad_decision = np.sum(log_sigma_k) / window_size
|
204 |
+
# if vad_decision < eta:
|
205 |
+
# noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
|
206 |
+
# print(vad_decision)
|
207 |
+
#
|
208 |
+
# a = ksi / (1 + ksi)
|
209 |
+
# vk = a * gammak
|
210 |
+
# ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
|
211 |
+
# hw = a * np.exp(ei_vk)
|
212 |
+
# sig = sig * hw
|
213 |
+
# xk_prev = sig ** 2
|
214 |
+
#
|
215 |
+
# vad[k:k + len2] = vad_decision >= eta
|
216 |
+
#
|
217 |
+
# vad = np.pad(vad, (0, len(wav) - len(vad)), mode="constant")
|
218 |
+
# return vad
|
219 |
+
|
220 |
+
|
221 |
+
def to_float(_input):
|
222 |
+
if _input.dtype == np.float64:
|
223 |
+
return _input, _input.dtype
|
224 |
+
elif _input.dtype == np.float32:
|
225 |
+
return _input.astype(np.float64), _input.dtype
|
226 |
+
elif _input.dtype == np.uint8:
|
227 |
+
return (_input - 128) / 128., _input.dtype
|
228 |
+
elif _input.dtype == np.int16:
|
229 |
+
return _input / 32768., _input.dtype
|
230 |
+
elif _input.dtype == np.int32:
|
231 |
+
return _input / 2147483648., _input.dtype
|
232 |
+
raise ValueError('Unsupported wave file format')
|
233 |
+
|
234 |
+
|
235 |
+
def from_float(_input, dtype):
|
236 |
+
if dtype == np.float64:
|
237 |
+
return _input, np.float64
|
238 |
+
elif dtype == np.float32:
|
239 |
+
return _input.astype(np.float32)
|
240 |
+
elif dtype == np.uint8:
|
241 |
+
return ((_input * 128) + 128).astype(np.uint8)
|
242 |
+
elif dtype == np.int16:
|
243 |
+
return (_input * 32768).astype(np.int16)
|
244 |
+
elif dtype == np.int32:
|
245 |
+
print(_input)
|
246 |
+
return (_input * 2147483648).astype(np.int32)
|
247 |
+
raise ValueError('Unsupported wave file format')
|