keithhon commited on
Commit
848667e
·
1 Parent(s): e7f3680

Upload vocoder/models/deepmind_version.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. vocoder/models/deepmind_version.py +170 -0
vocoder/models/deepmind_version.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from utils.display import *
5
+ from utils.dsp import *
6
+
7
+
8
+ class WaveRNN(nn.Module) :
9
+ def __init__(self, hidden_size=896, quantisation=256) :
10
+ super(WaveRNN, self).__init__()
11
+
12
+ self.hidden_size = hidden_size
13
+ self.split_size = hidden_size // 2
14
+
15
+ # The main matmul
16
+ self.R = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
17
+
18
+ # Output fc layers
19
+ self.O1 = nn.Linear(self.split_size, self.split_size)
20
+ self.O2 = nn.Linear(self.split_size, quantisation)
21
+ self.O3 = nn.Linear(self.split_size, self.split_size)
22
+ self.O4 = nn.Linear(self.split_size, quantisation)
23
+
24
+ # Input fc layers
25
+ self.I_coarse = nn.Linear(2, 3 * self.split_size, bias=False)
26
+ self.I_fine = nn.Linear(3, 3 * self.split_size, bias=False)
27
+
28
+ # biases for the gates
29
+ self.bias_u = nn.Parameter(torch.zeros(self.hidden_size))
30
+ self.bias_r = nn.Parameter(torch.zeros(self.hidden_size))
31
+ self.bias_e = nn.Parameter(torch.zeros(self.hidden_size))
32
+
33
+ # display num params
34
+ self.num_params()
35
+
36
+
37
+ def forward(self, prev_y, prev_hidden, current_coarse) :
38
+
39
+ # Main matmul - the projection is split 3 ways
40
+ R_hidden = self.R(prev_hidden)
41
+ R_u, R_r, R_e, = torch.split(R_hidden, self.hidden_size, dim=1)
42
+
43
+ # Project the prev input
44
+ coarse_input_proj = self.I_coarse(prev_y)
45
+ I_coarse_u, I_coarse_r, I_coarse_e = \
46
+ torch.split(coarse_input_proj, self.split_size, dim=1)
47
+
48
+ # Project the prev input and current coarse sample
49
+ fine_input = torch.cat([prev_y, current_coarse], dim=1)
50
+ fine_input_proj = self.I_fine(fine_input)
51
+ I_fine_u, I_fine_r, I_fine_e = \
52
+ torch.split(fine_input_proj, self.split_size, dim=1)
53
+
54
+ # concatenate for the gates
55
+ I_u = torch.cat([I_coarse_u, I_fine_u], dim=1)
56
+ I_r = torch.cat([I_coarse_r, I_fine_r], dim=1)
57
+ I_e = torch.cat([I_coarse_e, I_fine_e], dim=1)
58
+
59
+ # Compute all gates for coarse and fine
60
+ u = F.sigmoid(R_u + I_u + self.bias_u)
61
+ r = F.sigmoid(R_r + I_r + self.bias_r)
62
+ e = F.tanh(r * R_e + I_e + self.bias_e)
63
+ hidden = u * prev_hidden + (1. - u) * e
64
+
65
+ # Split the hidden state
66
+ hidden_coarse, hidden_fine = torch.split(hidden, self.split_size, dim=1)
67
+
68
+ # Compute outputs
69
+ out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
70
+ out_fine = self.O4(F.relu(self.O3(hidden_fine)))
71
+
72
+ return out_coarse, out_fine, hidden
73
+
74
+
75
+ def generate(self, seq_len):
76
+ with torch.no_grad():
77
+ # First split up the biases for the gates
78
+ b_coarse_u, b_fine_u = torch.split(self.bias_u, self.split_size)
79
+ b_coarse_r, b_fine_r = torch.split(self.bias_r, self.split_size)
80
+ b_coarse_e, b_fine_e = torch.split(self.bias_e, self.split_size)
81
+
82
+ # Lists for the two output seqs
83
+ c_outputs, f_outputs = [], []
84
+
85
+ # Some initial inputs
86
+ out_coarse = torch.LongTensor([0]).cuda()
87
+ out_fine = torch.LongTensor([0]).cuda()
88
+
89
+ # We'll meed a hidden state
90
+ hidden = self.init_hidden()
91
+
92
+ # Need a clock for display
93
+ start = time.time()
94
+
95
+ # Loop for generation
96
+ for i in range(seq_len) :
97
+
98
+ # Split into two hidden states
99
+ hidden_coarse, hidden_fine = \
100
+ torch.split(hidden, self.split_size, dim=1)
101
+
102
+ # Scale and concat previous predictions
103
+ out_coarse = out_coarse.unsqueeze(0).float() / 127.5 - 1.
104
+ out_fine = out_fine.unsqueeze(0).float() / 127.5 - 1.
105
+ prev_outputs = torch.cat([out_coarse, out_fine], dim=1)
106
+
107
+ # Project input
108
+ coarse_input_proj = self.I_coarse(prev_outputs)
109
+ I_coarse_u, I_coarse_r, I_coarse_e = \
110
+ torch.split(coarse_input_proj, self.split_size, dim=1)
111
+
112
+ # Project hidden state and split 6 ways
113
+ R_hidden = self.R(hidden)
114
+ R_coarse_u , R_fine_u, \
115
+ R_coarse_r, R_fine_r, \
116
+ R_coarse_e, R_fine_e = torch.split(R_hidden, self.split_size, dim=1)
117
+
118
+ # Compute the coarse gates
119
+ u = F.sigmoid(R_coarse_u + I_coarse_u + b_coarse_u)
120
+ r = F.sigmoid(R_coarse_r + I_coarse_r + b_coarse_r)
121
+ e = F.tanh(r * R_coarse_e + I_coarse_e + b_coarse_e)
122
+ hidden_coarse = u * hidden_coarse + (1. - u) * e
123
+
124
+ # Compute the coarse output
125
+ out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
126
+ posterior = F.softmax(out_coarse, dim=1)
127
+ distrib = torch.distributions.Categorical(posterior)
128
+ out_coarse = distrib.sample()
129
+ c_outputs.append(out_coarse)
130
+
131
+ # Project the [prev outputs and predicted coarse sample]
132
+ coarse_pred = out_coarse.float() / 127.5 - 1.
133
+ fine_input = torch.cat([prev_outputs, coarse_pred.unsqueeze(0)], dim=1)
134
+ fine_input_proj = self.I_fine(fine_input)
135
+ I_fine_u, I_fine_r, I_fine_e = \
136
+ torch.split(fine_input_proj, self.split_size, dim=1)
137
+
138
+ # Compute the fine gates
139
+ u = F.sigmoid(R_fine_u + I_fine_u + b_fine_u)
140
+ r = F.sigmoid(R_fine_r + I_fine_r + b_fine_r)
141
+ e = F.tanh(r * R_fine_e + I_fine_e + b_fine_e)
142
+ hidden_fine = u * hidden_fine + (1. - u) * e
143
+
144
+ # Compute the fine output
145
+ out_fine = self.O4(F.relu(self.O3(hidden_fine)))
146
+ posterior = F.softmax(out_fine, dim=1)
147
+ distrib = torch.distributions.Categorical(posterior)
148
+ out_fine = distrib.sample()
149
+ f_outputs.append(out_fine)
150
+
151
+ # Put the hidden state back together
152
+ hidden = torch.cat([hidden_coarse, hidden_fine], dim=1)
153
+
154
+ # Display progress
155
+ speed = (i + 1) / (time.time() - start)
156
+ stream('Gen: %i/%i -- Speed: %i', (i + 1, seq_len, speed))
157
+
158
+ coarse = torch.stack(c_outputs).squeeze(1).cpu().data.numpy()
159
+ fine = torch.stack(f_outputs).squeeze(1).cpu().data.numpy()
160
+ output = combine_signal(coarse, fine)
161
+
162
+ return output, coarse, fine
163
+
164
+ def init_hidden(self, batch_size=1) :
165
+ return torch.zeros(batch_size, self.hidden_size).cuda()
166
+
167
+ def num_params(self) :
168
+ parameters = filter(lambda p: p.requires_grad, self.parameters())
169
+ parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
170
+ print('Trainable Parameters: %.3f million' % parameters)