Spaces:
Running
Running
File size: 7,034 Bytes
c88be80 b0f434e 2912dde c88be80 74d9a64 c88be80 74d9a64 c88be80 74d9a64 c88be80 74d9a64 c88be80 74d9a64 c88be80 ad55b16 28dcf2b 4acc4e1 70df087 28dcf2b c88be80 28dcf2b 7aa1468 74d9a64 fecade2 c88be80 0273261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import requests
import datadog_api_client
from gradio.components import Image
from PIL import Image as PILImage, ImageDraw, ImageFont # This import may be needed if you're processing images
from PIL import Image
def face_crop(image, face_rect):
x1 = face_rect.get('x1')
y1 = face_rect.get('y1')
x2 = face_rect.get('x2')
y2 = face_rect.get('y2')
width = x2 - x1 + 1
height = y2 - y1 + 1
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image.width:
x2 = image.width - 1
if y2 >= image.height:
y2 = image.height - 1
face_image = image.crop((x1, y1, x2, y2))
face_image_ratio = face_image.width / float(face_image.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_image = face_image.resize((int(resized_w), int(resized_h)))
return face_image
def pil_image_to_base64(image, format="PNG"):
"""
Converts a PIL.Image object to a Base64-encoded string.
:param image: PIL.Image object
:param format: Format to save the image, e.g., "PNG", "JPEG"
:return: Base64-encoded string
"""
# Save the image to a BytesIO buffer
buffer = io.BytesIO()
image.save(buffer, format=format)
buffer.seek(0) # Rewind the buffer
# Convert the buffer's contents to a Base64 string
base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
return base64_string
def compare_face(frame1, frame2):
url = "http://127.0.0.1:8080/compare_face"
files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')}
file1 = None
file2 = None
try:
file1 = open(frame1, 'rb')
except:
return "Failed to open image1"
try:
file2 = open(frame2, 'rb')
except:
return "Failed to open image2"
url = "http://127.0.0.1:8080/compare_face"
files = {'file1': file1, 'file2': file2}
result = requests.post(url=url, files=files)
if result.ok:
json_result = result.json()
if json_result.get("resultCode") != "Ok":
return json_result.get("resultCode")
try:
image1 = Image.open(frame1)
image2 = Image.open(frame2)
html = ""
faces1 = json_result.get("faces1", {})
faces2 = json_result.get("faces2", {})
results = json_result.get("results", {})
for result in results:
similarity = result.get('similarity')
face1_idx = result.get('face1')
face2_idx = result.get('face2')
face_image1 = face_crop(image1, faces1[face1_idx])
face_value1 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image1, format="PNG"))
face_image2 = face_crop(image2, faces2[face2_idx])
face_value2 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image2, format="PNG"))
match_icon = '<svg fill="red" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.92V10.2H19V13.92H0ZM0 21.64V17.92H19V21.64H0Z"></path><path d="M14.08 0H18.08L5.08 32H1.08L14.08 0Z"></path></svg>'
if similarity > 0.67:
match_icon = '<svg fill="green" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.9202V10.2002H19V13.9202H0ZM0 21.6402V17.9202H19V21.6402H0Z"></path></svg>'
item_value = ('<div style="align-items: center; gap: 10px; display: flex; flex-direction: column;">'
'<div style="display: flex; align-items: center; gap: 20px;">'
'{face_value1}'
'{match_icon}'
'{face_value2}'
'</div>'
'<div style="text-align: center; margin-top: 10px;">'
'Similarity: {similarity}'
'</div>'
'</div>'
).format(face_value1=face_value1, face_value2=face_value2, match_icon=match_icon, similarity=f"{similarity:.2f}")
html += item_value
html += '<hr style="border: 1px solid #C0C0C0; margin: 10px 0;"/>'
return html
except:
return "Processing failed"
else:
return result.text
with gr.Blocks() as demo:
gr.Markdown(
"""
# KBY-AI - Face Recognition
We offer SDKs for face recognition, liveness detection(anti-spoofing) and ID card recognition.
<h4 style="display: flex; align-items: center;">
ID Document Liveness Detection - Linux - <a href="https://web.kby-ai.com">https://web.kby-ai.com</a>
<span>
<img src="https://github.com/kby-ai/.github/assets/125717930/bcf351c5-8b7a-496e-a8f9-c236eb8ad59e" style="margin: 4px; width: 36px; height: 20px">
</span>
</h4>
##### KYC Verification Demo - https://github.com/kby-ai/KYC-Verification-Demo-Android
##### ID Capture Web Demo - https://id-document-recognition-react-alpha.vercel.app
##### Documentation - Help Center - https://docs.kby-ai.com
"""
)
with gr.TabItem("Face Recognition"):
gr.Markdown(
"""
##### Docker Hub - https://hub.docker.com/r/kbyai/face-recognition
```bash
sudo docker pull kbyai/face-recognition:latest
sudo docker run -e LICENSE="xxxxx" -p 8081:8080 -p 9001:9000 kbyai/face-recognition:latest
```
"""
)
with gr.Column(scale=7):
with gr.Row():
with gr.Column():
image_input1 = gr.Image(type='filepath')
gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/5.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'],
inputs=image_input1)
with gr.Column():
image_input2 = gr.Image(type='filepath')
gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/6.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'],
inputs=image_input2)
face_recog_button = gr.Button("Compare Face", variant="primary", size="lg")
with gr.Column(scale=3):
recog_html_output = gr.HTML()
face_recog_button.click(compare_face, inputs=[image_input1, image_input2], outputs=recog_html_output)
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fkby-ai%2FFaceRecognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fkby-ai%2FFaceRecognition&countColor=%23263759" /></a>')
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) |