Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from gluonts.dataset.pandas import PandasDataset | |
from gluonts.dataset.split import split | |
from gluonts.torch.model.deepar import DeepAREstimator | |
import matplotlib.pyplot as plt | |
def fn(upload_data): | |
df = pd.read_csv(upload_data.name, index_col=0, parse_dates=True) | |
dataset = PandasDataset(df, target=df.columns[0]) | |
training_data, test_gen = split(dataset, offset=-36) | |
model = DeepAREstimator( | |
prediction_length=12, | |
freq=dataset.freq, | |
trainer_kwargs=dict(max_epochs=1), | |
).train( | |
training_data=training_data, | |
) | |
test_data = test_gen.generate_instances(prediction_length=12, windows=3) | |
forecasts = list(model.predict(test_data.input)) | |
fig = plt.figure() | |
df["#Passengers"].plot(color="black") | |
for forecast, color in zip(forecasts, ["green", "blue", "purple"]): | |
forecast.plot(color=f"tab:{color}") | |
plt.legend(["True values"], loc="upper left", fontsize="xx-large") | |
return fig | |
with gr.Blocks() as demo: | |
plot = gr.Plot() | |
upload_btn = gr.UploadButton() | |
upload_btn.upload(fn, inputs=upload_btn, outputs=plot) | |
if __name__ == "__main__": | |
demo.launch() | |