QnQChat / app.py
karthikqnq's picture
Update app.py
ce51673 verified
raw
history blame
2.21 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model_name = "karthikqnq/trainedmodel"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Construct the prompt from history and current message
prompt = system_message + "\n\n"
for user_msg, assistant_msg in history:
if user_msg:
prompt += f"User: {user_msg}\nAssistant: {assistant_msg}\n"
prompt += f"User: {message}\nAssistant: "
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
# Generate response
outputs = model.generate(
**inputs,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
num_return_sequences=1
)
# Decode the output and extract only the assistant's response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the assistant's reply after "Assistant:"
try:
assistant_response = response.split("Assistant: ")[-1].strip()
except:
assistant_response = response
return assistant_response
# Create the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly Chatbot.",
label="System message"
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
title="QnQ GPT-2 Chatbot",
description="A chatbot powered by the QnQ GPT-2 model"
)
if __name__ == "__main__":
demo.launch()