# 1. Import the required packages import torch import gradio as gr from typing import Dict from transformers import pipeline # 2. Define function to use our model on given text def trait_classifier(text: str) -> Dict[str, float]: # Set up text classification pipeline trait_classifier = pipeline(task="text-classification", # Because our model is on Hugging Face already, we can pass in the model name directly model="kar0lina/petarda-pandora1000-neu-xlm-roberta-base", # link to model on HF Hub device="cuda" if torch.cuda.is_available() else "cpu", top_k=None) # return all possible scores (not just top-1) # Get outputs from pipeline (as a list of dicts) outputs = trait_classifier(text)[0] print("outputs: ", outputs) # Format output for Gradio (e.g. {"label_1": probability_1, "label_2": probability_2}) output_dict = {} for item in outputs: output_dict[item["label"]] = item["score"] print("item: ", item) print("output_dict: ", output_dict) return output_dict # 3. Create a Gradio interface with details about our app description = """ A text classifier for PErsonality Trait prediction using AI model Roberta - Demo App. NEUROTICISM Fine-tuned from [robBERTa](https://huggingface.co/distilbert/distilbert-base-uncased) on a Pandora dataset""" demo = gr.Interface(fn=trait_classifier, inputs="text", outputs=gr.Label(num_top_classes=2), # show top 2 classes (that's all we have) title="🤯 Petarda", # theme="gr.themes.Ocean((primary_hue='amber', secondary_hue='cyan')", description=description, examples=[["I have a real problem right now... I am struggling a lot :("], ["He's such a nice, gentle man and it was great"]]) # 4. Launch the interface if __name__ == "__main__": demo.launch()