Spaces:
Runtime error
Runtime error
import torch | |
from diffusers import AnimateDiffPipeline, LCMScheduler, MotionAdapter | |
from diffusers.utils import export_to_gif | |
import os | |
import gc | |
import gradio as gr | |
# Environment setup | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' | |
gc.collect() | |
torch.cuda.empty_cache() | |
gc.collect() | |
torch.cuda.empty_cache() | |
# Load models and pipeline | |
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM", torch_dtype=torch.float16) | |
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear") | |
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora") | |
pipe.set_adapters(["lcm-lora"], [0.8]) | |
pipe.enable_vae_slicing() | |
pipe.enable_model_cpu_offload() | |
# Hardcoded predefined prompts | |
predefined_prompts = [ | |
"640*480 pixels, high resolution, ultra realistic", | |
"bad quality, worse quality, low resolution" | |
] | |
def generate_gif(custom_prompt): | |
# Combine the predefined prompts with the custom prompt | |
prompt = custom_prompt + ", " + predefined_prompts[0] | |
negative_prompt = predefined_prompts[1] | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_frames=32, | |
guidance_scale=2.0, | |
num_inference_steps=6, | |
generator=torch.Generator("cpu").manual_seed(0), | |
) | |
frames = output.frames[0] | |
export_to_gif(frames, "animatelcm.gif") | |
return "animatelcm.gif" | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Animate LCM GIF Generator") | |
custom_prompt_input = gr.Textbox(label="Custom Prompt", placeholder="Enter your custom prompt here...") | |
output_gif = gr.Image(label="Generated GIF") | |
generate_button = gr.Button("Generate GIF") | |
generate_button.click(fn=generate_gif, inputs=custom_prompt_input, outputs=output_gif) | |
# Launch the interface | |
demo.launch() | |