import fastai.vision.all import * import gradio as gr learn = load_learner('model.pkl') categories = ('wet','tawny','horned') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(224,224)) label = gr.outputs.label() examples = ['harpy.jpg','horned.jpg'] iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) iface.launch()