import base64 import json from io import BytesIO import pandas as pd from PIL import Image import gradio as gr import requests def ocr(image): image = Image.open(image) img_buffer = BytesIO() image.save(img_buffer, format=image.format) byte_data = img_buffer.getvalue() base64_bytes = base64.b64encode(byte_data) # bytes base64_str = base64_bytes.decode() url = "https://www.modelscope.cn/api/v1/studio/damo/ofa_ocr_pipeline/gradio/api/predict/" payload = json.dumps({ "data": [f"data:image/jpeg;base64,{base64_str}"], "dataType": ["image"] }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) jobj = json.loads(response.text) out_img_base64 = jobj['data'][0].replace('data:image/png;base64,','') out_img = Image.open(BytesIO(base64.urlsafe_b64decode(out_img_base64))) ocr_result = jobj['data'][1]['data'] result = pd.DataFrame(ocr_result, columns=['Box ID', 'Text']) return out_img, result title = "图片识别文字" io = gr.Interface(fn=ocr, inputs=gr.inputs.Image(type='filepath', label='Image'), outputs=[gr.outputs.Image(type='pil', label='Image'), gr.outputs.Dataframe(headers=['Box ID', 'Text'], type='pandas', label='OCR Results')], title=title) io.launch()