Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +42 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import json
|
3 |
+
from io import BytesIO
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
import gradio as gr
|
7 |
+
import requests
|
8 |
+
|
9 |
+
def ocr(image):
|
10 |
+
|
11 |
+
image = Image.open(image)
|
12 |
+
img_buffer = BytesIO()
|
13 |
+
image.save(img_buffer, format=image.format)
|
14 |
+
byte_data = img_buffer.getvalue()
|
15 |
+
base64_bytes = base64.b64encode(byte_data) # bytes
|
16 |
+
base64_str = base64_bytes.decode()
|
17 |
+
url = "https://www.modelscope.cn/api/v1/studio/damo/ofa_ocr_pipeline/gradio/api/predict/"
|
18 |
+
payload = json.dumps({
|
19 |
+
"data": [f"data:image/jpeg;base64,{base64_str}"],
|
20 |
+
"dataType": ["image"]
|
21 |
+
})
|
22 |
+
headers = {
|
23 |
+
'Content-Type': 'application/json'
|
24 |
+
}
|
25 |
+
|
26 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
27 |
+
jobj = json.loads(response.text)
|
28 |
+
out_img_base64 = jobj['data'][0].replace('data:image/png;base64,','')
|
29 |
+
out_img = Image.open(BytesIO(base64.urlsafe_b64decode(out_img_base64)))
|
30 |
+
ocr_result = jobj['data'][1]['data']
|
31 |
+
|
32 |
+
result = pd.DataFrame(ocr_result, columns=['Box ID', 'Text'])
|
33 |
+
|
34 |
+
return out_img, result
|
35 |
+
|
36 |
+
|
37 |
+
title = "图片识别文字"
|
38 |
+
io = gr.Interface(fn=ocr, inputs=gr.inputs.Image(type='filepath', label='Image'),
|
39 |
+
outputs=[gr.outputs.Image(type='pil', label='Image'),
|
40 |
+
gr.outputs.Dataframe(headers=['Box ID', 'Text'], type='pandas', label='OCR Results')],
|
41 |
+
title=title)
|
42 |
+
io.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
pillow
|
3 |
+
pandas
|
4 |
+
requests
|