File size: 2,726 Bytes
5265c21
3b5e064
c1786f2
 
8005a73
c1786f2
 
 
 
 
39c7e92
8005a73
c1786f2
 
 
 
 
 
 
 
8005a73
c1786f2
 
 
 
 
 
 
8005a73
 
 
c1786f2
 
 
8005a73
c1786f2
 
8005a73
c1786f2
 
 
 
2be2cf6
8320782
c1786f2
 
2bab361
c1786f2
8320782
c1786f2
 
 
 
 
 
2bab361
c1786f2
8320782
c1786f2
 
2bab361
c1786f2
8320782
c1786f2
 
 
 
 
 
 
 
2bab361
c1786f2
8320782
8005a73
 
 
 
 
 
2bab361
8005a73
c1786f2
 
 
 
 
 
15bbe04
 
c1786f2
15bbe04
 
 
 
 
 
 
c1786f2
9da273f
c1786f2
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
os.system("pip3 install cython_bbox gdown 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'")
from torchyolo import YoloHub
import gradio as gr
from utils import attempt_download_from_hub

""" 
Paper Implementation
#"kadirnar/OcSort"
#"kadirnar/SORT"
#"kadirnar/ByteTracker"
#"kadirnar/strongsort"
"""

def object_tracker(
    source: str,
    model_type: str,
    model_path: str,
    tracker_type: str,
    tracker_config_path: str,
    StrongSort_OsNet_Path: str = None,
):
    model = YoloHub(
        config_path="default_config.yaml",
        model_type=model_type,
        model_path=model_path,
    )

    if tracker_type == "STRONGSORT":
        StrongSort_OsNet_Path = attempt_download_from_hub(StrongSort_OsNet_Path)

    model.predict(
        source=source,
        tracker_type=tracker_type,
        tracker_weight_path=StrongSort_OsNet_Path,
        tracker_config_path=tracker_config_path,
    )

    return 'output.mp4'
       

inputs = [
    gr.Image(),
    gr.Dropdown(
        label="Model Type",
        choices=["yolov5", "yolov6", "yolov8"],
        value="yolov5",
    ),
    gr.Dropdown(
        label="Model Path",
        choices=[
            "kadirnar/yolov5s6-v6.0",
            "kadirnar/yolov6m-v3.0",
            "kadirnar/yolov8n-v8.0",
        ],
        value="kadirnar/yolov5s6-v6.",
    ),
    gr.Dropdown(
        label="Tracker Type",
        choices=["NORFAIR", "STRONGSORT", "OCSORT", "BYTETRACK", "SORT"],
        value="NORFAIR",
    ),
    gr.Dropdown(
        label="Tracker Config Path",
        choices=[
            "tracker/norfair_track.yaml",
            "tracker/strong_sort.yaml",
            "tracker/oc_sort.yaml",
            "tracker/byte_track.yaml",
            "tracker/sort_track.yaml",
        ],
        value="tracker/norfair_track.yaml",
    ),
    gr.Dropdown(
        label="Tracker Weight Path",
        choices=[
            "kadirnar/osnet_x0_5_imagenet",
            "kadirnar/osnet_x1_0_imagenet",
            "kadirnar/osnet_x0_25_imagenet"
        ],
        value="kadirnar/osnet_x0_5_imagenet",
    ),
]
examples = [
    [
        "test.mp4",
        "yolov5",
        "kadirnar/yolov5s6-v6.0",
        "SORT",
        "tracker/sort_track.yaml",
    ],
    [
        "testv2.mp4",
        "yolov6",
        "kadirnar/yolov6m-v3.0",
        "OCSORT",
        "tracker/oc_sort.yaml"
    ]
]
outputs = gr.Image()
title = "TorchYolo: YOLO Series Object Detection and Track Algorithm Library"

demo_app = gr.Interface(
    fn=object_tracker,
    inputs=inputs,
    examples=examples,
    outputs=outputs,
    title=title,
    cache_examples=False,
    theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)